Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 124587 by mnjuly1970 last updated on 04/Dec/20

               ...nice ◂::::▶ calculus       simple  question::       prove  that ::       ∫_0 ^( ∞) (4/( (√(4+x^4 )))) dx=^(???) ∫_0 ^( (π/2)) (dx/( (√(sin(x))))) +∫_0 ^( (π/2)) (dx/( (√(cos(x)))))

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...{nice}\:\blacktriangleleft::::\blacktriangleright\:{calculus} \\ $$$$\:\:\:\:\:{simple}\:\:{question}:: \\ $$$$\:\:\:\:\:{prove}\:\:{that}\::: \\ $$$$\:\:\:\:\:\int_{\mathrm{0}} ^{\:\infty} \frac{\mathrm{4}}{\:\sqrt{\mathrm{4}+{x}^{\mathrm{4}} }}\:{dx}\overset{???} {=}\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{{dx}}{\:\sqrt{{sin}\left({x}\right)}}\:+\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{{dx}}{\:\sqrt{{cos}\left({x}\right)}} \\ $$

Answered by mindispower last updated on 04/Dec/20

x=(√2)t  =∫((2(√2)dt)/( (√(1+t^4 ))))  t=(√(tg(x)))  dt=(1/(2cos^2 (x)(√(tg(x)))))  =((√2)/( (√(tg(x))))) .(1/(cos(x)))dx=∫_0 ^(π/2) ((√2)/( (√(sin(x)cos(x)))))  dx  =∫_0 ^(π/2) ((2dx)/( (√(2sin(x)cos(x)))))2∫(dx/( (√(sin(2x)))))  2x=w  ⇒=∫_0 ^π (dw/( (√(sin(w)))))=∫_0 ^(π/2) (dw/( (√(sin(w)))))+∫_(π/2) ^π (dw/( (√(sin(w)))))∣_(w=(π/2)+x)   =∫_0 ^(π/2) (dx/( (√(sin(x)))))+∫_0 ^(π/2) (dx/( (√(cos(x)))))

$${x}=\sqrt{\mathrm{2}}{t} \\ $$$$=\int\frac{\mathrm{2}\sqrt{\mathrm{2}}{dt}}{\:\sqrt{\mathrm{1}+{t}^{\mathrm{4}} }} \\ $$$${t}=\sqrt{{tg}\left({x}\right)} \\ $$$${dt}=\frac{\mathrm{1}}{\mathrm{2}{cos}^{\mathrm{2}} \left({x}\right)\sqrt{{tg}\left({x}\right)}} \\ $$$$=\frac{\sqrt{\mathrm{2}}}{\:\sqrt{{tg}\left({x}\right)}}\:.\frac{\mathrm{1}}{{cos}\left({x}\right)}{dx}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\sqrt{\mathrm{2}}}{\:\sqrt{{sin}\left({x}\right){cos}\left({x}\right)}}\:\:{dx} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{2}{dx}}{\:\sqrt{\mathrm{2}{sin}\left({x}\right){cos}\left({x}\right)}}\mathrm{2}\int\frac{{dx}}{\:\sqrt{{sin}\left(\mathrm{2}{x}\right)}} \\ $$$$\mathrm{2}{x}={w} \\ $$$$\Rightarrow=\int_{\mathrm{0}} ^{\pi} \frac{{dw}}{\:\sqrt{{sin}\left({w}\right)}}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{dw}}{\:\sqrt{{sin}\left({w}\right)}}+\int_{\frac{\pi}{\mathrm{2}}} ^{\pi} \frac{{dw}}{\:\sqrt{{sin}\left({w}\right)}}\mid_{{w}=\frac{\pi}{\mathrm{2}}+{x}} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{dx}}{\:\sqrt{{sin}\left({x}\right)}}+\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{dx}}{\:\sqrt{{cos}\left({x}\right)}} \\ $$$$ \\ $$$$ \\ $$

Commented by mindispower last updated on 05/Dec/20

withe plesur

$${withe}\:{plesur} \\ $$

Commented by mnjuly1970 last updated on 04/Dec/20

excellent.sir mindspower  as always...

$${excellent}.{sir}\:{mindspower} \\ $$$${as}\:{always}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com