Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 116744 by mnjuly1970 last updated on 06/Oct/20

              ... (( nice)/(calculus)) ...    prove  that ::                  ∫_(−1) ^( ∞) (e^(−4x) /( (√(x+1)))) dx =((√π)/2) e^4                  ... m.n .1970...

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:...\:\frac{\:{nice}}{{calculus}}\:... \\ $$$$\:\:{prove}\:\:{that}\::: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{−\mathrm{1}} ^{\:\infty} \frac{{e}^{−\mathrm{4}{x}} }{\:\sqrt{{x}+\mathrm{1}}}\:{dx}\:=\frac{\sqrt{\pi}}{\mathrm{2}}\:{e}^{\mathrm{4}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...\:{m}.{n}\:.\mathrm{1970}... \\ $$$$ \\ $$

Answered by mindispower last updated on 06/Oct/20

x+1=t⇒  ∫_0 ^∞ (e^(−4t+4) /( (√t)))dt  4t=w⇒e^4 ∫_0 ^∞ (e^(−w) /( (√w))).(dw/2)=(e^4 /2).∫_0 ^∞ w^((1/2)−1) e^(−w) dw  =(e^4 /2)Γ((1/2))=((e^4 (√π))/2)

$${x}+\mathrm{1}={t}\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{{e}^{−\mathrm{4}{t}+\mathrm{4}} }{\:\sqrt{{t}}}{dt} \\ $$$$\mathrm{4}{t}={w}\Rightarrow{e}^{\mathrm{4}} \int_{\mathrm{0}} ^{\infty} \frac{{e}^{−{w}} }{\:\sqrt{{w}}}.\frac{{dw}}{\mathrm{2}}=\frac{{e}^{\mathrm{4}} }{\mathrm{2}}.\int_{\mathrm{0}} ^{\infty} {w}^{\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{1}} {e}^{−{w}} {dw} \\ $$$$=\frac{{e}^{\mathrm{4}} }{\mathrm{2}}\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)=\frac{{e}^{\mathrm{4}} \sqrt{\pi}}{\mathrm{2}} \\ $$

Commented by mnjuly1970 last updated on 06/Oct/20

thank you so much ...

$${thank}\:{you}\:{so}\:{much}\:... \\ $$

Answered by Dwaipayan Shikari last updated on 06/Oct/20

∫_(−1) ^∞ (e^(−4x) /( (√(1+x))))dx                      1+x=t^2 ⇒1=2t(dt/dx)  ∫_0 ^∞ ((e^(−4(t^2 −1)) 2t)/t)dt  2e^4 ∫_0 ^∞ e^(−4t^2 ) dt =2e^4 (1/4)∫_0 ^∞ e^(−u^2 ) du=((√π)/2)e^4

$$\int_{−\mathrm{1}} ^{\infty} \frac{{e}^{−\mathrm{4}{x}} }{\:\sqrt{\mathrm{1}+{x}}}{dx}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}+{x}={t}^{\mathrm{2}} \Rightarrow\mathrm{1}=\mathrm{2}{t}\frac{{dt}}{{dx}} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{{e}^{−\mathrm{4}\left({t}^{\mathrm{2}} −\mathrm{1}\right)} \mathrm{2}{t}}{{t}}{dt} \\ $$$$\mathrm{2}{e}^{\mathrm{4}} \int_{\mathrm{0}} ^{\infty} {e}^{−\mathrm{4}{t}^{\mathrm{2}} } {dt}\:=\mathrm{2}{e}^{\mathrm{4}} \frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\infty} {e}^{−{u}^{\mathrm{2}} } {du}=\frac{\sqrt{\pi}}{\mathrm{2}}{e}^{\mathrm{4}} \\ $$

Commented by mnjuly1970 last updated on 06/Oct/20

grateful..

$${grateful}.. \\ $$

Answered by 1549442205PVT last updated on 06/Oct/20

I=    ∫_(−1) ^( ∞) (e^(−4x) /( (√(x+1)))) dx =    ^(I.B.P) 2e^(−4x) (√(x+1))∣_(−1) ^(+∞)   +8∫_(−1) ^∞ e^(−4x) (√(x+1))dx=8∫_(−1) ^∞ e^(−4x) (√(x+1))dx  Put (√(x+1))=u⇒x+1=u^2 ⇒dx=2udu  J=∫_(−1) ^∞ e^(−4x) (√(x+1))dx=2∫_0 ^∞ e^(−4(u^2 −1)) u^2 du  =(1/4)e^4 ∫_0 ^∞ e^(−(2u)^2 ) (2u)^2 d(2u)=_(2u=v) (e^4 /4)∫_0 ^∞ e^(−v^2 ) v^2 dv  Put v^2 =t⇒2vdv=dt⇒dv=(dt/(2(√t)))  J=(e^4 /8)∫_0 ^∞ e^(−t) .t^(1/2) dt=(e^4 /8)∫_0 ^∞ e^(−t) .t^((3/2)−1) dt  =(e^4 /8)Γ((3/2))=(e^4 /8).((√π)/2).Therefore,  I=8J=((e^4 (√π))/2) (Q.E.D)

$$\mathrm{I}=\:\:\:\:\int_{−\mathrm{1}} ^{\:\infty} \frac{{e}^{−\mathrm{4}{x}} }{\:\sqrt{{x}+\mathrm{1}}}\:{dx}\:\overset{\mathrm{I}.\mathrm{B}.\mathrm{P}} {=\:\:\:\:}\mathrm{2e}^{−\mathrm{4x}} \sqrt{\mathrm{x}+\mathrm{1}}\mid_{−\mathrm{1}} ^{+\infty} \\ $$$$+\mathrm{8}\int_{−\mathrm{1}} ^{\infty} \mathrm{e}^{−\mathrm{4x}} \sqrt{\mathrm{x}+\mathrm{1}}\mathrm{dx}=\mathrm{8}\int_{−\mathrm{1}} ^{\infty} \mathrm{e}^{−\mathrm{4x}} \sqrt{\mathrm{x}+\mathrm{1}}\mathrm{dx} \\ $$$$\mathrm{Put}\:\sqrt{\mathrm{x}+\mathrm{1}}=\mathrm{u}\Rightarrow\mathrm{x}+\mathrm{1}=\mathrm{u}^{\mathrm{2}} \Rightarrow\mathrm{dx}=\mathrm{2udu} \\ $$$$\mathrm{J}=\int_{−\mathrm{1}} ^{\infty} \mathrm{e}^{−\mathrm{4x}} \sqrt{\mathrm{x}+\mathrm{1}}\mathrm{dx}=\mathrm{2}\int_{\mathrm{0}} ^{\infty} \mathrm{e}^{−\mathrm{4}\left(\mathrm{u}^{\mathrm{2}} −\mathrm{1}\right)} \mathrm{u}^{\mathrm{2}} \mathrm{du} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\mathrm{e}^{\mathrm{4}} \int_{\mathrm{0}} ^{\infty} \mathrm{e}^{−\left(\mathrm{2u}\right)^{\mathrm{2}} } \left(\mathrm{2u}\right)^{\mathrm{2}} \mathrm{d}\left(\mathrm{2u}\underset{\mathrm{2u}=\mathrm{v}} {\right)=}\frac{\mathrm{e}^{\mathrm{4}} }{\mathrm{4}}\int_{\mathrm{0}} ^{\infty} \mathrm{e}^{−\mathrm{v}^{\mathrm{2}} } \mathrm{v}^{\mathrm{2}} \mathrm{dv} \\ $$$$\mathrm{Put}\:\mathrm{v}^{\mathrm{2}} =\mathrm{t}\Rightarrow\mathrm{2vdv}=\mathrm{dt}\Rightarrow\mathrm{dv}=\frac{\mathrm{dt}}{\mathrm{2}\sqrt{\mathrm{t}}} \\ $$$$\mathrm{J}=\frac{\mathrm{e}^{\mathrm{4}} }{\mathrm{8}}\int_{\mathrm{0}} ^{\infty} \mathrm{e}^{−\mathrm{t}} .\mathrm{t}^{\frac{\mathrm{1}}{\mathrm{2}}} \mathrm{dt}=\frac{\mathrm{e}^{\mathrm{4}} }{\mathrm{8}}\int_{\mathrm{0}} ^{\infty} \mathrm{e}^{−\mathrm{t}} .\mathrm{t}^{\frac{\mathrm{3}}{\mathrm{2}}−\mathrm{1}} \mathrm{dt} \\ $$$$=\frac{\mathrm{e}^{\mathrm{4}} }{\mathrm{8}}\Gamma\left(\frac{\mathrm{3}}{\mathrm{2}}\right)=\frac{\mathrm{e}^{\mathrm{4}} }{\mathrm{8}}.\frac{\sqrt{\pi}}{\mathrm{2}}.\mathrm{Therefore}, \\ $$$$\mathrm{I}=\mathrm{8J}=\frac{\mathrm{e}^{\mathrm{4}} \sqrt{\pi}}{\mathrm{2}}\:\left(\boldsymbol{\mathrm{Q}}.\boldsymbol{\mathrm{E}}.\boldsymbol{\mathrm{D}}\right) \\ $$

Commented by mnjuly1970 last updated on 06/Oct/20

thank you...

$${thank}\:{you}... \\ $$

Commented by 1549442205PVT last updated on 07/Oct/20

Thank Sir.You are welcome

$$\mathrm{Thank}\:\mathrm{Sir}.\mathrm{You}\:\mathrm{are}\:\mathrm{welcome} \\ $$

Answered by mathmax by abdo last updated on 06/Oct/20

∫_(−1) ^∞  (e^(−4x) /(√(x+1)))dx =_((√(x+1))=t)  ∫_0 ^∞   (e^(−4(t^2 −1)) /t)(2t)dt =2 ∫_0 ^∞  e^(−4t^2 +4)  dt  =2 e^4  ∫_0 ^∞   e^(−(2t)^2 ) dt =_(2t=z)    2e^4  ∫_0 ^∞  e^(−z^2 ) (dz/2) =e^4  ∫_0 ^∞ e^(−z^2 ) dz  =e^4 .((√π)/2) =((√π)/2)e^4

$$\int_{−\mathrm{1}} ^{\infty} \:\frac{\mathrm{e}^{−\mathrm{4x}} }{\sqrt{\mathrm{x}+\mathrm{1}}}\mathrm{dx}\:=_{\sqrt{\mathrm{x}+\mathrm{1}}=\mathrm{t}} \:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{e}^{−\mathrm{4}\left(\mathrm{t}^{\mathrm{2}} −\mathrm{1}\right)} }{\mathrm{t}}\left(\mathrm{2t}\right)\mathrm{dt}\:=\mathrm{2}\:\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{−\mathrm{4t}^{\mathrm{2}} +\mathrm{4}} \:\mathrm{dt} \\ $$$$=\mathrm{2}\:\mathrm{e}^{\mathrm{4}} \:\int_{\mathrm{0}} ^{\infty} \:\:\mathrm{e}^{−\left(\mathrm{2t}\right)^{\mathrm{2}} } \mathrm{dt}\:=_{\mathrm{2t}=\mathrm{z}} \:\:\:\mathrm{2e}^{\mathrm{4}} \:\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{−\mathrm{z}^{\mathrm{2}} } \frac{\mathrm{dz}}{\mathrm{2}}\:=\mathrm{e}^{\mathrm{4}} \:\int_{\mathrm{0}} ^{\infty} \mathrm{e}^{−\mathrm{z}^{\mathrm{2}} } \mathrm{dz} \\ $$$$=\mathrm{e}^{\mathrm{4}} .\frac{\sqrt{\pi}}{\mathrm{2}}\:=\frac{\sqrt{\pi}}{\mathrm{2}}\mathrm{e}^{\mathrm{4}} \\ $$$$ \\ $$

Commented by mnjuly1970 last updated on 06/Oct/20

grateful  sir ..   very  nice  as  always..

$${grateful}\:\:{sir}\:.. \\ $$$$\:{very}\:\:{nice}\:\:{as}\:\:{always}.. \\ $$

Commented by Bird last updated on 07/Oct/20

you are welcome sir.

$${you}\:{are}\:{welcome}\:{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com