Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 131991 by mnjuly1970 last updated on 10/Feb/21

            ...nice         calculus...      prove  that :    φ_1 =∫_0 ^( 1) li_2 (1−x^2 )=(π^2 /2) −4      φ_2 =∫_0 ^( 1) ((log(1−t))/(t^(3/4) (√(1−t))))dt=π^(3/2) .((√2)/(Γ^2 ((3/4))))(log(2)−(π/2))  hint   1:ψ((3/4))=_(easy) ^(why??) −γ+(π/2)−3log(2)  hint  2 :ψ((1/2))=_(easy) ^(why??) −γ−2log(2)

$$\:\:\:\:\:\:\:\:\:\:\:\:...{nice}\:\:\:\:\:\:\:\:\:{calculus}...\:\: \\ $$$$\:\:{prove}\:\:{that}\:: \\ $$$$\:\:\phi_{\mathrm{1}} =\int_{\mathrm{0}} ^{\:\mathrm{1}} {li}_{\mathrm{2}} \left(\mathrm{1}−{x}^{\mathrm{2}} \right)=\frac{\pi^{\mathrm{2}} }{\mathrm{2}}\:−\mathrm{4} \\ $$$$\:\:\:\:\phi_{\mathrm{2}} =\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{log}\left(\mathrm{1}−{t}\right)}{{t}^{\frac{\mathrm{3}}{\mathrm{4}}} \sqrt{\mathrm{1}−{t}}}{dt}=\pi^{\frac{\mathrm{3}}{\mathrm{2}}} .\frac{\sqrt{\mathrm{2}}}{\Gamma^{\mathrm{2}} \left(\frac{\mathrm{3}}{\mathrm{4}}\right)}\left({log}\left(\mathrm{2}\right)−\frac{\pi}{\mathrm{2}}\right) \\ $$$${hint}\:\:\:\mathrm{1}:\psi\left(\frac{\mathrm{3}}{\mathrm{4}}\right)\underset{{easy}} {\overset{{why}??} {=}}−\gamma+\frac{\pi}{\mathrm{2}}−\mathrm{3}{log}\left(\mathrm{2}\right) \\ $$$${hint}\:\:\mathrm{2}\::\psi\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\underset{{easy}} {\overset{{why}??} {=}}−\gamma−\mathrm{2}{log}\left(\mathrm{2}\right) \\ $$

Answered by Dwaipayan Shikari last updated on 10/Feb/21

ψ((1/2))=−γ+∫_0 ^1 ((1−x^(−(1/2)) )/(1−x))dx=−γ+2∫_0 ^1 ((x−1)/(1−x^2 ))dx  =−γ−2log(2)

$$\psi\left(\frac{\mathrm{1}}{\mathrm{2}}\right)=−\gamma+\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}−{x}^{−\frac{\mathrm{1}}{\mathrm{2}}} }{\mathrm{1}−{x}}{dx}=−\gamma+\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}−\mathrm{1}}{\mathrm{1}−{x}^{\mathrm{2}} }{dx} \\ $$$$=−\gamma−\mathrm{2}{log}\left(\mathrm{2}\right) \\ $$

Answered by Dwaipayan Shikari last updated on 10/Feb/21

I(b)=∫_0 ^1 t^(a−1) (1−t)^(b−1) dt=((Γ(a)Γ(b))/(Γ(a+b)))  I′(b)=∫_0 ^1 t^(a−1) (1−t)^(b−1) log(1−t)dt  =((Γ(a)(Γ(a+b)Γ′(b)−Γ′(a+b)Γ(b)))/(Γ^2 (a+b)))  put b=(1/2)    a=(1/4)

$${I}\left({b}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{{a}−\mathrm{1}} \left(\mathrm{1}−{t}\right)^{{b}−\mathrm{1}} {dt}=\frac{\Gamma\left({a}\right)\Gamma\left({b}\right)}{\Gamma\left({a}+{b}\right)} \\ $$$${I}'\left({b}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{{a}−\mathrm{1}} \left(\mathrm{1}−{t}\right)^{{b}−\mathrm{1}} {log}\left(\mathrm{1}−{t}\right){dt} \\ $$$$=\frac{\Gamma\left({a}\right)\left(\Gamma\left({a}+{b}\right)\Gamma'\left({b}\right)−\Gamma'\left({a}+{b}\right)\Gamma\left({b}\right)\right)}{\Gamma^{\mathrm{2}} \left({a}+{b}\right)} \\ $$$${put}\:{b}=\frac{\mathrm{1}}{\mathrm{2}}\:\:\:\:{a}=\frac{\mathrm{1}}{\mathrm{4}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com