Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 131401 by mnjuly1970 last updated on 04/Feb/21

              ...nice  calculus...     prove  that:::      ∫_0 ^( 1) (Arcsin(x)).(Arccos(x))dx=^(??) 2−(π/2)

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:...{nice}\:\:{calculus}... \\ $$$$\:\:\:{prove}\:\:{that}::: \\ $$$$\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \left(\mathscr{A}{rcsin}\left({x}\right)\right).\left(\mathscr{A}{rccos}\left({x}\right)\right){dx}\overset{??} {=}\mathrm{2}−\frac{\pi}{\mathrm{2}} \\ $$$$ \\ $$

Answered by mathmax by abdo last updated on 04/Feb/21

Φ=∫_0 ^1  (arcsinx)(arcosx)dx ⇒Φ =∫_0 ^(1 ) arcsinx((π/2)−arcsinx)dx  =(π/2)∫_0 ^1  arcsinx dx −∫_0 ^1  arcsin^2 x dx  ∫_0 ^1  arcsinx dx =_(arcsinx=t)    ∫_0 ^(π/2)  t.cost dt =_(byparts)   [tsint]_0 ^(π/2) −∫_0 ^(π/2)  sint dt  =(π/2) +[cost]_0 ^(π/2)  =(π/2)−1  ∫_0 ^1  (arcsinx)^2 dx =_(arcsinx=t)   ∫_0 ^(π/2)  t^2 cost dt  =[t^2 sint]_0 ^(π/2) −2∫_0 ^(π/2)  t sint dt =(π^2 /4)−2{ [−tcost]_0 ^(π/2) +∫_0 ^(π/2) cost dt}  =(π^2 /4)−2[sint]_0 ^(π/2)  =(π^2 /4)−2 ⇒Φ=(π/2)((π/2)−1)−(π^2 /4)+2 ⇒  Φ=2−(π/2)

$$\Phi=\int_{\mathrm{0}} ^{\mathrm{1}} \:\left(\mathrm{arcsinx}\right)\left(\mathrm{arcosx}\right)\mathrm{dx}\:\Rightarrow\Phi\:=\int_{\mathrm{0}} ^{\mathrm{1}\:} \mathrm{arcsinx}\left(\frac{\pi}{\mathrm{2}}−\mathrm{arcsinx}\right)\mathrm{dx} \\ $$$$=\frac{\pi}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{arcsinx}\:\mathrm{dx}\:−\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{arcsin}^{\mathrm{2}} \mathrm{x}\:\mathrm{dx} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{arcsinx}\:\mathrm{dx}\:=_{\mathrm{arcsinx}=\mathrm{t}} \:\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{t}.\mathrm{cost}\:\mathrm{dt}\:=_{\mathrm{byparts}} \:\:\left[\mathrm{tsint}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} −\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{sint}\:\mathrm{dt} \\ $$$$=\frac{\pi}{\mathrm{2}}\:+\left[\mathrm{cost}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:=\frac{\pi}{\mathrm{2}}−\mathrm{1} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\left(\mathrm{arcsinx}\right)^{\mathrm{2}} \mathrm{dx}\:=_{\mathrm{arcsinx}=\mathrm{t}} \:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{t}^{\mathrm{2}} \mathrm{cost}\:\mathrm{dt} \\ $$$$=\left[\mathrm{t}^{\mathrm{2}} \mathrm{sint}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} −\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{t}\:\mathrm{sint}\:\mathrm{dt}\:=\frac{\pi^{\mathrm{2}} }{\mathrm{4}}−\mathrm{2}\left\{\:\left[−\mathrm{tcost}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} +\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{cost}\:\mathrm{dt}\right\} \\ $$$$=\frac{\pi^{\mathrm{2}} }{\mathrm{4}}−\mathrm{2}\left[\mathrm{sint}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:=\frac{\pi^{\mathrm{2}} }{\mathrm{4}}−\mathrm{2}\:\Rightarrow\Phi=\frac{\pi}{\mathrm{2}}\left(\frac{\pi}{\mathrm{2}}−\mathrm{1}\right)−\frac{\pi^{\mathrm{2}} }{\mathrm{4}}+\mathrm{2}\:\Rightarrow \\ $$$$\Phi=\mathrm{2}−\frac{\pi}{\mathrm{2}} \\ $$

Commented by mnjuly1970 last updated on 04/Feb/21

thank you so much  sir max...

$${thank}\:{you}\:{so}\:{much} \\ $$$${sir}\:{max}... \\ $$

Commented by mathmax by abdo last updated on 04/Feb/21

you are welcome sir.

$$\mathrm{you}\:\mathrm{are}\:\mathrm{welcome}\:\mathrm{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com