Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 129806 by mnjuly1970 last updated on 19/Jan/21

               ... nice   calculus ...     please  prove that ::      Φ = ∫_0 ^( 1) ((Arctan(x))/(1+x)) dx=(π/8) log(2) ...

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...\:{nice}\:\:\:{calculus}\:... \\ $$$$\:\:\:{please}\:\:{prove}\:{that}\::: \\ $$$$\:\:\:\:\Phi\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{Arctan}\left({x}\right)}{\mathrm{1}+{x}}\:{dx}=\frac{\pi}{\mathrm{8}}\:{log}\left(\mathrm{2}\right)\:... \\ $$$$ \\ $$

Answered by Dwaipayan Shikari last updated on 19/Jan/21

[tan^(−1) (x)log(x+1)]_0 ^1 −∫_0 ^1 ((log(x+1))/(x^2 +1))dx  =(π/4)log(2)−∫_0 ^(π/4)  log(1+tanθ)dθ  =(π/4)log(2)−(π/8)log(2)  =(π/8)log(2)

$$\left[{tan}^{−\mathrm{1}} \left({x}\right){log}\left({x}+\mathrm{1}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} −\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{log}\left({x}+\mathrm{1}\right)}{{x}^{\mathrm{2}} +\mathrm{1}}{dx} \\ $$$$=\frac{\pi}{\mathrm{4}}{log}\left(\mathrm{2}\right)−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:{log}\left(\mathrm{1}+{tan}\theta\right){d}\theta \\ $$$$=\frac{\pi}{\mathrm{4}}{log}\left(\mathrm{2}\right)−\frac{\pi}{\mathrm{8}}{log}\left(\mathrm{2}\right) \\ $$$$=\frac{\pi}{\mathrm{8}}{log}\left(\mathrm{2}\right) \\ $$

Commented by mnjuly1970 last updated on 19/Jan/21

nice very nice..

$${nice}\:{very}\:{nice}.. \\ $$

Answered by mnjuly1970 last updated on 19/Jan/21

Answered by mathmax by abdo last updated on 19/Jan/21

Φ=∫_0 ^1  ((arctanx)/(1+x))dx by parts Φ=[ln(1+x)arctanx]_0 ^1 −∫_0 ^1 ln(1+x)×(dx/(1+x^2 ))  =(π/4)ln(2)−∫_0 ^1  ((ln(1+x))/(1+x^2 ))dx  we hsve  ∫_0 ^1  ((ln(1+x))/(1+x^2 ))dx =_(x=tanθ)    ∫_0 ^(π/4)  ((ln(1+tanθ))/(1+tan^2 θ))(1+tan^2 θ)dθ  =∫_0 ^(π/4)  ln(1+tanθ)dθ  =_(θ=(π/4)−u)   ∫_0 ^(π/4)  ln(1+((1−tanu)/(1+tanu)))du  =∫_0 ^(π/4) ln((2/(1+tanu)))du =(π/4)ln(2)−∫_0 ^(π/4) ln(1+tanu)du ⇒  ∫_0 ^(π/4) ln(1+tanθ)dθ =(π/8)ln(2) ⇒  Φ=(π/4)ln(2)−(π/8)ln(2) =(π/8)ln(2)

$$\Phi=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{arctanx}}{\mathrm{1}+\mathrm{x}}\mathrm{dx}\:\mathrm{by}\:\mathrm{parts}\:\Phi=\left[\mathrm{ln}\left(\mathrm{1}+\mathrm{x}\right)\mathrm{arctanx}\right]_{\mathrm{0}} ^{\mathrm{1}} −\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}\left(\mathrm{1}+\mathrm{x}\right)×\frac{\mathrm{dx}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} } \\ $$$$=\frac{\pi}{\mathrm{4}}\mathrm{ln}\left(\mathrm{2}\right)−\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{x}\right)}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx}\:\:\mathrm{we}\:\mathrm{hsve} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{x}\right)}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx}\:=_{\mathrm{x}=\mathrm{tan}\theta} \:\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{tan}\theta\right)}{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \theta}\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \theta\right)\mathrm{d}\theta \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\mathrm{ln}\left(\mathrm{1}+\mathrm{tan}\theta\right)\mathrm{d}\theta\:\:=_{\theta=\frac{\pi}{\mathrm{4}}−\mathrm{u}} \:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\mathrm{ln}\left(\mathrm{1}+\frac{\mathrm{1}−\mathrm{tanu}}{\mathrm{1}+\mathrm{tanu}}\right)\mathrm{du} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{ln}\left(\frac{\mathrm{2}}{\mathrm{1}+\mathrm{tanu}}\right)\mathrm{du}\:=\frac{\pi}{\mathrm{4}}\mathrm{ln}\left(\mathrm{2}\right)−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{ln}\left(\mathrm{1}+\mathrm{tanu}\right)\mathrm{du}\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{ln}\left(\mathrm{1}+\mathrm{tan}\theta\right)\mathrm{d}\theta\:=\frac{\pi}{\mathrm{8}}\mathrm{ln}\left(\mathrm{2}\right)\:\Rightarrow \\ $$$$\Phi=\frac{\pi}{\mathrm{4}}\mathrm{ln}\left(\mathrm{2}\right)−\frac{\pi}{\mathrm{8}}\mathrm{ln}\left(\mathrm{2}\right)\:=\frac{\pi}{\mathrm{8}}\mathrm{ln}\left(\mathrm{2}\right) \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com