Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 133443 by mnjuly1970 last updated on 22/Feb/21

                 ......nice      calculus.......    if  a,b,c ≥0      and ::    acos^2 (x)+bsin^2 (x)≤c      then  prove that::         (√a) cos^2 (x)+(√b) sin^2 (x)≤(√c)                        .............

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:......{nice}\:\:\:\:\:\:{calculus}....... \\ $$$$\:\:{if}\:\:{a},{b},{c}\:\geqslant\mathrm{0} \\ $$$$\:\:\:\:{and}\:::\:\:\:\:{acos}^{\mathrm{2}} \left({x}\right)+{bsin}^{\mathrm{2}} \left({x}\right)\leqslant{c} \\ $$$$\:\:\:\:{then}\:\:{prove}\:{that}:: \\ $$$$\:\:\:\:\:\:\:\sqrt{{a}}\:{cos}^{\mathrm{2}} \left({x}\right)+\sqrt{{b}}\:{sin}^{\mathrm{2}} \left({x}\right)\leqslant\sqrt{{c}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:............. \\ $$

Answered by mnjuly1970 last updated on 22/Feb/21

  u_1 ^→ =((√a) cos(x),(√b) sin(x))∈R^2      u_2 ^→ =(cos(x),sin(x))∈R^2       ∣u_1 ^→ .u_2 ^→ ∣≤_(schwartz) ^(cauchy) ∣u_1 ^→ ∣∣u_2 ^→ ∣      ∣(√a) cos^2 (x)+(√b) sin^2 (x)∣≤(√(acos^2 (x)+bsin^2 (x))) .(√([cos^2 (x)+sin^2 (x)]=1))     ∣(√a) cos^2 (x)+(√b) sin^2 (x)∣≤(√c)                   .....

$$\:\:\overset{\rightarrow} {{u}}_{\mathrm{1}} =\left(\sqrt{{a}}\:{cos}\left({x}\right),\sqrt{{b}}\:{sin}\left({x}\right)\right)\in\mathbb{R}^{\mathrm{2}} \\ $$$$\:\:\:\overset{\rightarrow} {{u}}_{\mathrm{2}} =\left({cos}\left({x}\right),{sin}\left({x}\right)\right)\in\mathbb{R}^{\mathrm{2}} \\ $$$$\:\:\:\:\mid\overset{\rightarrow} {{u}}_{\mathrm{1}} .\overset{\rightarrow} {{u}}_{\mathrm{2}} \mid\underset{{schwartz}} {\overset{{cauchy}} {\leqslant}}\mid\overset{\rightarrow} {{u}}_{\mathrm{1}} \mid\mid\overset{\rightarrow} {{u}}_{\mathrm{2}} \mid \\ $$$$\:\:\:\:\mid\sqrt{{a}}\:{cos}^{\mathrm{2}} \left({x}\right)+\sqrt{{b}}\:{sin}^{\mathrm{2}} \left({x}\right)\mid\leqslant\sqrt{{acos}^{\mathrm{2}} \left({x}\right)+{bsin}^{\mathrm{2}} \left({x}\right)}\:.\sqrt{\left[{cos}^{\mathrm{2}} \left({x}\right)+{sin}^{\mathrm{2}} \left({x}\right)\right]=\mathrm{1}} \\ $$$$\:\:\:\mid\sqrt{{a}}\:{cos}^{\mathrm{2}} \left({x}\right)+\sqrt{{b}}\:{sin}^{\mathrm{2}} \left({x}\right)\mid\leqslant\sqrt{{c}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:..... \\ $$$$\:\:\:\:\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com