Question Number 130198 by mnjuly1970 last updated on 23/Jan/21 | ||
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:....{nice}\:\:{calculus}... \\ $$$$\:\:\:\:{calculate}:: \\ $$$$\:\:\:\:\:\:\mathscr{L}\:\left[{e}^{−{t}} .\:\sqrt{{t}\:}\:\right]\:\underset{{transform}} {\overset{{Laplace}} {=}}\:?\:... \\ $$$$\:\:\: \\ $$ | ||
Answered by Dwaipayan Shikari last updated on 23/Jan/21 | ||
$$\int_{\mathrm{0}} ^{\infty} {e}^{−\left({s}+\mathrm{1}\right){t}} \sqrt{{t}}\:{dt}\:\:\:\:\: \\ $$$$=\frac{\mathrm{1}}{\left({s}+\mathrm{1}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }\Gamma\left(\frac{\mathrm{3}}{\mathrm{2}}\right)=\sqrt{\frac{\pi}{\mathrm{4}\left({s}+\mathrm{1}\right)^{\mathrm{3}} }} \\ $$ | ||
Commented by mnjuly1970 last updated on 23/Jan/21 | ||
$${thanks}\:{alot}.. \\ $$ | ||