Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 127958 by mnjuly1970 last updated on 03/Jan/21

           ...nice  calculus...     calculate      Ω=∫_1 ^( ∞) ((ln(x^4 −2x^2 +2))/(x(√(x^2 −1)) )) dx=?

$$\:\:\:\:\:\:\:\:\:\:\:...{nice}\:\:{calculus}... \\ $$$$\:\:\:{calculate} \\ $$$$\:\:\:\:\Omega=\int_{\mathrm{1}} ^{\:\infty} \frac{{ln}\left({x}^{\mathrm{4}} −\mathrm{2}{x}^{\mathrm{2}} +\mathrm{2}\right)}{{x}\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}\:}\:{dx}=? \\ $$$$ \\ $$

Answered by Dwaipayan Shikari last updated on 03/Jan/21

∫_1 ^∞ ((log(x^4 −2x^2 +2))/(x(√(x^2 −1))))dx  =∫_0 ^(π/2) ((log(sec^4 θ−2sec^2 θ+2))/(secθtanθ))secθtanθ  =∫_0 ^(π/2) log(1−2cos^2 θ+2cos^4 θ)−4∫_0 ^(π/2) log(cosθ)dθ  =∫_0 ^(π/2) log(1−(1/2)sin^2 2θ)+2πlog(2)  =∫_0 ^(π/2) log(cos^2 2θ+(1/2)sin^2 2θ)+2πlog(2)  =πlog(((1+(1/( (√2))))/2))+πlog(4)=πlog(2+(√2))  Lemma  ∫_0 ^(π/2) log(a^2 cos^2 θ+b^2 sin^2 θ)=πlog(((a+b)/2))

$$\int_{\mathrm{1}} ^{\infty} \frac{{log}\left({x}^{\mathrm{4}} −\mathrm{2}{x}^{\mathrm{2}} +\mathrm{2}\right)}{{x}\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}{dx} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{log}\left({sec}^{\mathrm{4}} \theta−\mathrm{2}{sec}^{\mathrm{2}} \theta+\mathrm{2}\right)}{{sec}\theta{tan}\theta}{sec}\theta{tan}\theta \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {log}\left(\mathrm{1}−\mathrm{2}{cos}^{\mathrm{2}} \theta+\mathrm{2}{cos}^{\mathrm{4}} \theta\right)−\mathrm{4}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {log}\left({cos}\theta\right){d}\theta \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {log}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}{sin}^{\mathrm{2}} \mathrm{2}\theta\right)+\mathrm{2}\pi{log}\left(\mathrm{2}\right) \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {log}\left({cos}^{\mathrm{2}} \mathrm{2}\theta+\frac{\mathrm{1}}{\mathrm{2}}{sin}^{\mathrm{2}} \mathrm{2}\theta\right)+\mathrm{2}\pi{log}\left(\mathrm{2}\right) \\ $$$$=\pi{log}\left(\frac{\mathrm{1}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}}{\mathrm{2}}\right)+\pi{log}\left(\mathrm{4}\right)=\pi{log}\left(\mathrm{2}+\sqrt{\mathrm{2}}\right) \\ $$$${Lemma} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {log}\left({a}^{\mathrm{2}} {cos}^{\mathrm{2}} \theta+{b}^{\mathrm{2}} {sin}^{\mathrm{2}} \theta\right)=\pi{log}\left(\frac{{a}+{b}}{\mathrm{2}}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com