Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 137474 by mnjuly1970 last updated on 03/Apr/21

                       .....nice  ........  calculus.....         𝛗=∫_0 ^( 1) ln(((ln((√(1−x)))))^(1/3)  )              Im(𝛗)=???

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:.....{nice}\:\:........\:\:{calculus}..... \\ $$$$\:\:\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\mathrm{1}} {ln}\left(\sqrt[{\mathrm{3}}]{{ln}\left(\sqrt{\mathrm{1}−{x}}\right)}\:\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{Im}\left(\boldsymbol{\phi}\right)=??? \\ $$

Answered by mindispower last updated on 03/Apr/21

Im(φ)=(1/3)∫_0 ^1 ln(ln(x))dx  =Im(1/3)∫_(−∞) ^0 ln(t)e^t dt  =Im(1/3)∫_0 ^∞ ln(−x)e^(−x) dx  =((1π)/3)∫_0 ^∞ e^(−t) dt=(π/3)Γ(1)=(π/3)

$${Im}\left(\phi\right)=\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left({ln}\left({x}\right)\right){dx} \\ $$$$={Im}\frac{\mathrm{1}}{\mathrm{3}}\int_{−\infty} ^{\mathrm{0}} {ln}\left({t}\right){e}^{{t}} {dt} \\ $$$$={Im}\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\infty} {ln}\left(−{x}\right){e}^{−{x}} {dx} \\ $$$$=\frac{\mathrm{1}\pi}{\mathrm{3}}\int_{\mathrm{0}} ^{\infty} {e}^{−{t}} {dt}=\frac{\pi}{\mathrm{3}}\Gamma\left(\mathrm{1}\right)=\frac{\pi}{\mathrm{3}} \\ $$

Commented by mnjuly1970 last updated on 03/Apr/21

 very nice ..thank you mr power...

$$\:{very}\:{nice}\:..{thank}\:{you}\:{mr}\:{power}... \\ $$

Answered by Ñï= last updated on 03/Apr/21

∫_0 ^1 ln (((ln ((√(1−x)))))^(1/3) )=(1/3)∫_0 ^1 ln (ln (√x))dx=(1/3)∫_0 ^1 ln ((1/2)ln x)dx  =(1/3)∫_0 ^1 (−ln 2+ln lnx)dx=−(1/3)ln 2+(1/3)∫_0 ^1 ln lnxdx  =−(1/3)ln 2+(1/3)∫_(−∞) ^0 e^u ln udu  =−(1/3)ln2+(1/3)∫_0 ^∞ e^(−u) ln(−u)du  =−(1/3)ln2+(1/3)∫_0 ^∞ e^(−u) ln (e^(iπ) u)du  =−(1/3)ln2+(1/3)∫_0 ^∞ e^(−u) (lnu+iπ)du  =−(1/3)ln2+(1/3)(∂/∂a)∣_(a=0) ∫_0 ^∞ u^a e^(−u) du+((iπ)/3)  =−(1/3)ln2+(1/3)(∂/∂a)∣_(a=0) Γ(a+1)+((iπ)/3)  =−(1/3)ln2+(1/3)ψ(1)+((iπ)/3)  im(φ)=(π/3)  −−−−−−−−−−−−  ∫_0 ^1 (−1)^x dx=∫_0 ^1 e^(iπx) dx=((2i)/π)

$$\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\:\left(\sqrt[{\mathrm{3}}]{{ln}\:\left(\sqrt{\mathrm{1}−{x}}\right)}\right)=\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\:\left({ln}\:\sqrt{{x}}\right){dx}=\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\:\left(\frac{\mathrm{1}}{\mathrm{2}}{ln}\:{x}\right){dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\mathrm{1}} \left(−{ln}\:\mathrm{2}+{ln}\:{lnx}\right){dx}=−\frac{\mathrm{1}}{\mathrm{3}}{ln}\:\mathrm{2}+\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\:{lnxdx} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{3}}{ln}\:\mathrm{2}+\frac{\mathrm{1}}{\mathrm{3}}\int_{−\infty} ^{\mathrm{0}} {e}^{{u}} {ln}\:{udu} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{3}}{ln}\mathrm{2}+\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\infty} {e}^{−{u}} {ln}\left(−{u}\right){du} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{3}}{ln}\mathrm{2}+\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\infty} {e}^{−{u}} {ln}\:\left({e}^{{i}\pi} {u}\right){du} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{3}}{ln}\mathrm{2}+\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\infty} {e}^{−{u}} \left({lnu}+{i}\pi\right){du} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{3}}{ln}\mathrm{2}+\frac{\mathrm{1}}{\mathrm{3}}\frac{\partial}{\partial{a}}\mid_{{a}=\mathrm{0}} \int_{\mathrm{0}} ^{\infty} {u}^{{a}} {e}^{−{u}} {du}+\frac{{i}\pi}{\mathrm{3}} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{3}}{ln}\mathrm{2}+\frac{\mathrm{1}}{\mathrm{3}}\frac{\partial}{\partial{a}}\mid_{{a}=\mathrm{0}} \Gamma\left({a}+\mathrm{1}\right)+\frac{{i}\pi}{\mathrm{3}} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{3}}{ln}\mathrm{2}+\frac{\mathrm{1}}{\mathrm{3}}\psi\left(\mathrm{1}\right)+\frac{{i}\pi}{\mathrm{3}} \\ $$$${im}\left(\phi\right)=\frac{\pi}{\mathrm{3}} \\ $$$$−−−−−−−−−−−− \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \left(−\mathrm{1}\right)^{{x}} {dx}=\int_{\mathrm{0}} ^{\mathrm{1}} {e}^{{i}\pi{x}} {dx}=\frac{\mathrm{2}{i}}{\pi} \\ $$

Commented by mnjuly1970 last updated on 03/Apr/21

thanks alot ..

$${thanks}\:{alot}\:.. \\ $$

Answered by Dwaipayan Shikari last updated on 03/Apr/21

(1/3)∫_0 ^1 log((1/2)log(x))dx  =−(1/3)log(2)+(1/3)∫_0 ^1 log(log(x))dx       x=e^(−t) ⇒1=−e^(−t) (dt/dx)  =−(1/3)log(2)+(1/3)∫_0 ^∞ e^(−t) log(−t)dt  =−(1/3)log(2)+((πi)/3)−(γ/3)  Im(φ)=(π/3)

$$\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\mathrm{1}} {log}\left(\frac{\mathrm{1}}{\mathrm{2}}{log}\left({x}\right)\right){dx} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{3}}{log}\left(\mathrm{2}\right)+\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\mathrm{1}} {log}\left({log}\left({x}\right)\right){dx}\:\:\:\:\:\:\:{x}={e}^{−{t}} \Rightarrow\mathrm{1}=−{e}^{−{t}} \frac{{dt}}{{dx}} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{3}}{log}\left(\mathrm{2}\right)+\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\infty} {e}^{−{t}} {log}\left(−{t}\right){dt} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{3}}{log}\left(\mathrm{2}\right)+\frac{\pi{i}}{\mathrm{3}}−\frac{\gamma}{\mathrm{3}} \\ $$$${Im}\left(\phi\right)=\frac{\pi}{\mathrm{3}} \\ $$

Commented by Dwaipayan Shikari last updated on 03/Apr/21

If it was ∫_0 ^1 log(((log((√(1/(1−x))))))^(1/3) )dx then the answer will be  =((−1)/3)log(2)−(γ/3)

$${If}\:{it}\:{was}\:\int_{\mathrm{0}} ^{\mathrm{1}} {log}\left(\sqrt[{\mathrm{3}}]{{log}\left(\sqrt{\frac{\mathrm{1}}{\mathrm{1}−{x}}}\right)}\right){dx}\:{then}\:{the}\:{answer}\:{will}\:{be} \\ $$$$=\frac{−\mathrm{1}}{\mathrm{3}}{log}\left(\mathrm{2}\right)−\frac{\gamma}{\mathrm{3}} \\ $$

Commented by mnjuly1970 last updated on 03/Apr/21

 grateful mr payan...

$$\:{grateful}\:{mr}\:{payan}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com