Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 139101 by mnjuly1970 last updated on 22/Apr/21

             .......nice   calculus.....  𝛗=^(???) ∫_0 ^( 1) ∫_0 ^( 1) ((1−x)/(1−xy))(−ln(xy))^(2019) dxdy                           .........

$$\:\:\:\:\:\:\:\:\:\:\:\:\:.......{nice}\:\:\:{calculus}..... \\ $$$$\boldsymbol{\phi}\overset{???} {=}\int_{\mathrm{0}} ^{\:\mathrm{1}} \int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{1}−{x}}{\mathrm{1}−{xy}}\left(−{ln}\left({xy}\right)\right)^{\mathrm{2019}} {dxdy} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:......... \\ $$

Answered by Dwaipayan Shikari last updated on 22/Apr/21

ϑ(α)=∫_0 ^1 ∫_0 ^1 ((1−x)/(1−xy))(xy)^α dxdy  =Σ_(n=0) ^∞ ∫_0 ^1 ∫_0 ^1 (xy)^(n+α) −x^(n+α+1) y^(n+α) dxdy  =Σ_(n=0) ^∞ ∫_0 ^1 (y^(n+α) /(n+α+1))−(y^(n+α) /((n+α+2)))dy  =Σ_(n=0) ^∞ (1/((n+α+1)^2 ))−(1/((n+α+1)(n+α+2)))  =Σ_(n=0) ^∞ (1/((n+α+1)^2 ))−ψ(α+1)+ψ(α+2)=ψ′(α+1)−ψ(α+1)+ψ(α+2)  ϑ^(2019) (α)=2020!(−1)^(2019) ψ^(2021) (α+1)−2019!ψ^(2020) (α+1)+2019!ψ^(2020) (α+2)  −ϑ^(2019) (0)=2020!ζ(2020)+2019!ζ(2020)−2019!(ζ(2021)−1)

$$\vartheta\left(\alpha\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}−{x}}{\mathrm{1}−{xy}}\left({xy}\right)^{\alpha} {dxdy} \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \left({xy}\right)^{{n}+\alpha} −{x}^{{n}+\alpha+\mathrm{1}} {y}^{{n}+\alpha} {dxdy} \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{y}^{{n}+\alpha} }{{n}+\alpha+\mathrm{1}}−\frac{{y}^{{n}+\alpha} }{\left({n}+\alpha+\mathrm{2}\right)}{dy} \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left({n}+\alpha+\mathrm{1}\right)^{\mathrm{2}} }−\frac{\mathrm{1}}{\left({n}+\alpha+\mathrm{1}\right)\left({n}+\alpha+\mathrm{2}\right)} \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left({n}+\alpha+\mathrm{1}\right)^{\mathrm{2}} }−\psi\left(\alpha+\mathrm{1}\right)+\psi\left(\alpha+\mathrm{2}\right)=\psi'\left(\alpha+\mathrm{1}\right)−\psi\left(\alpha+\mathrm{1}\right)+\psi\left(\alpha+\mathrm{2}\right) \\ $$$$\vartheta^{\mathrm{2019}} \left(\alpha\right)=\mathrm{2020}!\left(−\mathrm{1}\right)^{\mathrm{2019}} \psi^{\mathrm{2021}} \left(\alpha+\mathrm{1}\right)−\mathrm{2019}!\psi^{\mathrm{2020}} \left(\alpha+\mathrm{1}\right)+\mathrm{2019}!\psi^{\mathrm{2020}} \left(\alpha+\mathrm{2}\right) \\ $$$$−\vartheta^{\mathrm{2019}} \left(\mathrm{0}\right)=\mathrm{2020}!\zeta\left(\mathrm{2020}\right)+\mathrm{2019}!\zeta\left(\mathrm{2020}\right)−\mathrm{2019}!\left(\zeta\left(\mathrm{2021}\right)−\mathrm{1}\right) \\ $$

Commented by mnjuly1970 last updated on 22/Apr/21

   thanks alot

$$\:\:\:{thanks}\:{alot} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com