Question Number 161687 by SANOGO last updated on 21/Dec/21 | ||
$${nature}\:{of}\:{the}\:{integral} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{{t}^{\mathrm{2}} \sqrt{\mathrm{1}−{t}}}{dt} \\ $$ | ||
Answered by Ar Brandon last updated on 21/Dec/21 | ||
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{{t}^{\mathrm{2}} \sqrt{\mathrm{1}−{t}}}{dt},\:{u}=\frac{\mathrm{1}}{{t}}\Rightarrow−{du}=\frac{\mathrm{1}}{{t}^{\mathrm{2}} }{dt} \\ $$$$=\int_{\mathrm{1}} ^{\infty} \frac{{du}}{\:\sqrt{\mathrm{1}−\frac{\mathrm{1}}{{u}^{\mathrm{2}} }}}=\int_{\mathrm{1}} ^{\infty} \frac{{u}}{\:\sqrt{{u}^{\mathrm{2}} −\mathrm{1}}}{du} \\ $$$$=\left[\sqrt{{u}^{\mathrm{2}} −\mathrm{1}}\right]_{\mathrm{1}} ^{\infty} \rightarrow+\infty\:\mathrm{divergent} \\ $$ | ||
Commented by SANOGO last updated on 22/Dec/21 | ||
$${merci}\:{bie}\overset{} {{n}} \\ $$ | ||