Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 143702 by henderson last updated on 17/Jun/21

n ∈ IN.  I_n  = ∫_1 ^( e) x^(n+1) lnx dx.  1. prove that (I_n ) is positive and increasing.  2. using a part−by−part integration, calculate I_n .

$${n}\:\in\:\mathrm{IN}. \\ $$$${I}_{{n}} \:=\:\int_{\mathrm{1}} ^{\:\mathrm{e}} {x}^{{n}+\mathrm{1}} {lnx}\:{dx}. \\ $$$$\mathrm{1}.\:\boldsymbol{\mathrm{prove}}\:\boldsymbol{\mathrm{that}}\:\left(\boldsymbol{{I}}_{\boldsymbol{{n}}} \right)\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{positive}}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{increasing}}. \\ $$$$\mathrm{2}.\:\boldsymbol{\mathrm{using}}\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{part}}−\boldsymbol{\mathrm{by}}−\boldsymbol{\mathrm{part}}\:\boldsymbol{\mathrm{integration}},\:\boldsymbol{\mathrm{calculate}}\:\boldsymbol{{I}}_{\boldsymbol{{n}}} . \\ $$

Answered by mindispower last updated on 17/Jun/21

ln(x)≥0,∀x≥1  ⇒∫_1 ^e x^(n+1) ln(x)≥∫_1 ^e 0.dx=0  2 I_n =[(x^(n+2) /(n+2))ln(x)]_1 ^e −(1/(n+2))∫_1 ^e (x^(n+2) /x)dx  (e^(n+2) /(n+2))−(1/((n+2)^2 ))[x^(n+2) ]_1 ^e   =(((n+1)e^(n+2) +1)/((n+2)^2 ))

$${ln}\left({x}\right)\geqslant\mathrm{0},\forall{x}\geqslant\mathrm{1} \\ $$$$\Rightarrow\int_{\mathrm{1}} ^{{e}} {x}^{{n}+\mathrm{1}} {ln}\left({x}\right)\geqslant\int_{\mathrm{1}} ^{{e}} \mathrm{0}.{dx}=\mathrm{0} \\ $$$$\mathrm{2}\:{I}_{{n}} =\left[\frac{{x}^{{n}+\mathrm{2}} }{{n}+\mathrm{2}}{ln}\left({x}\right)\right]_{\mathrm{1}} ^{{e}} −\frac{\mathrm{1}}{{n}+\mathrm{2}}\int_{\mathrm{1}} ^{{e}} \frac{{x}^{{n}+\mathrm{2}} }{{x}}{dx} \\ $$$$\frac{{e}^{{n}+\mathrm{2}} }{{n}+\mathrm{2}}−\frac{\mathrm{1}}{\left({n}+\mathrm{2}\right)^{\mathrm{2}} }\left[{x}^{{n}+\mathrm{2}} \right]_{\mathrm{1}} ^{{e}} \\ $$$$=\frac{\left({n}+\mathrm{1}\right){e}^{{n}+\mathrm{2}} +\mathrm{1}}{\left({n}+\mathrm{2}\right)^{\mathrm{2}} } \\ $$$$ \\ $$

Answered by mathmax by abdo last updated on 17/Jun/21

1) we have 1≤x≤e ⇒x^(n+1) logx≥0 and  I_(n+1) −I_n =∫_1 ^e  (x^(n+2) −x^(n+1) )logx dx =∫_1 ^e x^(n+1) (x−1)logx dx≥0 ⇒  I_n is increazing  2) by parts I_n =[(x^(n+2) /(n+2))logx]_1 ^e −∫_1 ^e  (x^(n+1) /(n+2))dx  =(1/(n+2))−(1/(n+2))[(1/(n+2))x^(n+2) ]_1 ^e  =(1/(n+2))−(1/((n+2)^2 ))(e^(n+2) −1)  =((n+2−(e^(n+2) −1))/((n+2)^2 )) =((n+3−e^(n+2) )/((n+2)^2 ))

$$\left.\mathrm{1}\right)\:\mathrm{we}\:\mathrm{have}\:\mathrm{1}\leqslant\mathrm{x}\leqslant\mathrm{e}\:\Rightarrow\mathrm{x}^{\mathrm{n}+\mathrm{1}} \mathrm{logx}\geqslant\mathrm{0}\:\mathrm{and} \\ $$$$\mathrm{I}_{\mathrm{n}+\mathrm{1}} −\mathrm{I}_{\mathrm{n}} =\int_{\mathrm{1}} ^{\mathrm{e}} \:\left(\mathrm{x}^{\mathrm{n}+\mathrm{2}} −\mathrm{x}^{\mathrm{n}+\mathrm{1}} \right)\mathrm{logx}\:\mathrm{dx}\:=\int_{\mathrm{1}} ^{\mathrm{e}} \mathrm{x}^{\mathrm{n}+\mathrm{1}} \left(\mathrm{x}−\mathrm{1}\right)\mathrm{logx}\:\mathrm{dx}\geqslant\mathrm{0}\:\Rightarrow \\ $$$$\mathrm{I}_{\mathrm{n}} \mathrm{is}\:\mathrm{increazing} \\ $$$$\left.\mathrm{2}\right)\:\mathrm{by}\:\mathrm{parts}\:\mathrm{I}_{\mathrm{n}} =\left[\frac{\mathrm{x}^{\mathrm{n}+\mathrm{2}} }{\mathrm{n}+\mathrm{2}}\mathrm{logx}\right]_{\mathrm{1}} ^{\mathrm{e}} −\int_{\mathrm{1}} ^{\mathrm{e}} \:\frac{\mathrm{x}^{\mathrm{n}+\mathrm{1}} }{\mathrm{n}+\mathrm{2}}\mathrm{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{n}+\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{n}+\mathrm{2}}\left[\frac{\mathrm{1}}{\mathrm{n}+\mathrm{2}}\mathrm{x}^{\mathrm{n}+\mathrm{2}} \right]_{\mathrm{1}} ^{\mathrm{e}} \:=\frac{\mathrm{1}}{\mathrm{n}+\mathrm{2}}−\frac{\mathrm{1}}{\left(\mathrm{n}+\mathrm{2}\right)^{\mathrm{2}} }\left(\mathrm{e}^{\mathrm{n}+\mathrm{2}} −\mathrm{1}\right) \\ $$$$=\frac{\mathrm{n}+\mathrm{2}−\left(\mathrm{e}^{\mathrm{n}+\mathrm{2}} −\mathrm{1}\right)}{\left(\mathrm{n}+\mathrm{2}\right)^{\mathrm{2}} }\:=\frac{\mathrm{n}+\mathrm{3}−\mathrm{e}^{\mathrm{n}+\mathrm{2}} }{\left(\mathrm{n}+\mathrm{2}\right)^{\mathrm{2}} } \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com