Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 213047 by hardmath last updated on 29/Oct/24

n = 15  find:     ((4n^2   +  4n  +  120)/( (√(n^4   +  2n^3   +  n^2 ))))  =  ?

$$\boldsymbol{\mathrm{n}}\:=\:\mathrm{15} \\ $$$$\mathrm{find}:\:\:\:\:\:\frac{\mathrm{4n}^{\mathrm{2}} \:\:+\:\:\mathrm{4n}\:\:+\:\:\mathrm{120}}{\:\sqrt{\mathrm{n}^{\mathrm{4}} \:\:+\:\:\mathrm{2n}^{\mathrm{3}} \:\:+\:\:\mathrm{n}^{\mathrm{2}} }}\:\:=\:\:? \\ $$

Answered by mehdee7396 last updated on 29/Oct/24

(((2n+1)^2 +119)/(n(n+1)))=4.5

$$\frac{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} +\mathrm{119}}{{n}\left({n}+\mathrm{1}\right)}=\mathrm{4}.\mathrm{5} \\ $$

Answered by MrGaster last updated on 29/Oct/24

((4∙15^2 +4∙15+120)/( (√(15^4 +2∙15^3 +15^2 ))))  ((4∙225+60+120)/( (√(50625+6750+225))))  ((900+60+120)/( (√(57600))))  ((1080)/(240))  =4.5

$$\frac{\mathrm{4}\centerdot\mathrm{15}^{\mathrm{2}} +\mathrm{4}\centerdot\mathrm{15}+\mathrm{120}}{\:\sqrt{\mathrm{15}^{\mathrm{4}} +\mathrm{2}\centerdot\mathrm{15}^{\mathrm{3}} +\mathrm{15}^{\mathrm{2}} }} \\ $$$$\frac{\mathrm{4}\centerdot\mathrm{225}+\mathrm{60}+\mathrm{120}}{\:\sqrt{\mathrm{50625}+\mathrm{6750}+\mathrm{225}}} \\ $$$$\frac{\mathrm{900}+\mathrm{60}+\mathrm{120}}{\:\sqrt{\mathrm{57600}}} \\ $$$$\frac{\mathrm{1080}}{\mathrm{240}} \\ $$$$=\mathrm{4}.\mathrm{5} \\ $$

Commented by hardmath last updated on 03/Nov/24

thank you dear professors

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{dear}\:\mathrm{professors} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com