Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 123167 by Dwaipayan Shikari last updated on 23/Nov/20

Σ_(n=1) ^∞ ((√n)/(n^2 +n+1))

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\sqrt{{n}}}{{n}^{\mathrm{2}} +{n}+\mathrm{1}} \\ $$

Commented by mathmax by abdo last updated on 23/Nov/20

Σ_(n=1) ^∞  ((√n)/(n^2  +n+1))=((√1)/3) +((√2)/(2^2  +2+1)) +((√3)/(3^2  +3+1))+.....

$$\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\sqrt{\mathrm{n}}}{\mathrm{n}^{\mathrm{2}} \:+\mathrm{n}+\mathrm{1}}=\frac{\sqrt{\mathrm{1}}}{\mathrm{3}}\:+\frac{\sqrt{\mathrm{2}}}{\mathrm{2}^{\mathrm{2}} \:+\mathrm{2}+\mathrm{1}}\:+\frac{\sqrt{\mathrm{3}}}{\mathrm{3}^{\mathrm{2}} \:+\mathrm{3}+\mathrm{1}}+..... \\ $$

Answered by liberty last updated on 23/Nov/20

 Σ_(n=1) ^∞  ((√n)/((n+1+(√n))(n+1−(√n))))   Σ_(t=1) ^∞ (t/((t^2 +t+1)(t^2 −t+1)))   (1/2)Σ_(t=1) ^∞  (((t^2 +t+1)−(t^2 −t+1))/((t^2 +t+1)(t^2 −t+1)))  (1/2)[ Σ_(t=1) ^∞  (1/(t^2 −t+1))−(1/(t^2 +t+1)) ]  (1/2) [ 1−(1/3)+(1/3)−(1/7)+(1/7)−(1/(13))+(1/(13))−(1/(21))+... +0−0 ]  (1/2)×1=(1/2)

$$\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\sqrt{{n}}}{\left({n}+\mathrm{1}+\sqrt{{n}}\right)\left({n}+\mathrm{1}−\sqrt{{n}}\right)} \\ $$$$\:\underset{{t}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{t}}{\left({t}^{\mathrm{2}} +{t}+\mathrm{1}\right)\left({t}^{\mathrm{2}} −{t}+\mathrm{1}\right)} \\ $$$$\:\frac{\mathrm{1}}{\mathrm{2}}\underset{{t}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\left({t}^{\mathrm{2}} +{t}+\mathrm{1}\right)−\left({t}^{\mathrm{2}} −{t}+\mathrm{1}\right)}{\left({t}^{\mathrm{2}} +{t}+\mathrm{1}\right)\left({t}^{\mathrm{2}} −{t}+\mathrm{1}\right)} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left[\:\underset{{t}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{{t}^{\mathrm{2}} −{t}+\mathrm{1}}−\frac{\mathrm{1}}{{t}^{\mathrm{2}} +{t}+\mathrm{1}}\:\right] \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\:\left[\:\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{7}}+\frac{\mathrm{1}}{\mathrm{7}}−\frac{\mathrm{1}}{\mathrm{13}}+\frac{\mathrm{1}}{\mathrm{13}}−\frac{\mathrm{1}}{\mathrm{21}}+...\:+\mathrm{0}−\mathrm{0}\:\right] \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{1}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Commented by Dwaipayan Shikari last updated on 23/Nov/20

But  ′t′ doesn′t sum up linearly    (1/2)Σ_(n=1) ^∞ (1/((n+1−(√n))))−(1/((n+1+(√n))))  =(1/2)Σ_(t=(√1)) ^∞ (1/(t^2 −t+1))−(1/(t^2 +t+1))  ′t′ will take take the value of (√1), (√2), (√3),  ....

$${But}\:\:'{t}'\:{doesn}'{t}\:{sum}\:{up}\:{linearly}\:\: \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left({n}+\mathrm{1}−\sqrt{{n}}\right)}−\frac{\mathrm{1}}{\left({n}+\mathrm{1}+\sqrt{{n}}\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\underset{{t}=\sqrt{\mathrm{1}}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{t}^{\mathrm{2}} −{t}+\mathrm{1}}−\frac{\mathrm{1}}{{t}^{\mathrm{2}} +{t}+\mathrm{1}} \\ $$$$'{t}'\:{will}\:{take}\:{take}\:{the}\:{value}\:{of}\:\sqrt{\mathrm{1}},\:\sqrt{\mathrm{2}},\:\sqrt{\mathrm{3}},\:\:.... \\ $$$$ \\ $$

Commented by mathmax by abdo last updated on 23/Nov/20

answer not correct you can not use  (√n)=t  in sum its not a integral  ....!

$$\mathrm{answer}\:\mathrm{not}\:\mathrm{correct}\:\mathrm{you}\:\mathrm{can}\:\mathrm{not}\:\mathrm{use}\:\:\sqrt{\mathrm{n}}=\mathrm{t}\:\:\mathrm{in}\:\mathrm{sum}\:\mathrm{its}\:\mathrm{not}\:\mathrm{a}\:\mathrm{integral} \\ $$$$....! \\ $$

Commented by benjo_mathlover last updated on 23/Nov/20

it should be   Σ_(n=1) ^∞ ((√n)/((n+(√n)+1)(n−(√n)+1)))=  Σ_(n=1) ^∞  (((n+(√n)+1)−(n−(√n)+1))/(2(n+(√n)+1)(n−(√n)+1)))=  (1/2)Σ_(n=1) ^∞  (1/(n−(√n)+1)) − (1/(n+(√n)+1))=  (1/2) [ 1−(1/3) + (1/(3−(√2)))−(1/(3+(√2)))+(1/(4−(√3)))−(1/(4+(√3)))+... ]

$${it}\:{should}\:{be}\: \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\sqrt{{n}}}{\left({n}+\sqrt{{n}}+\mathrm{1}\right)\left({n}−\sqrt{{n}}+\mathrm{1}\right)}= \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\left({n}+\sqrt{{n}}+\mathrm{1}\right)−\left({n}−\sqrt{{n}}+\mathrm{1}\right)}{\mathrm{2}\left({n}+\sqrt{{n}}+\mathrm{1}\right)\left({n}−\sqrt{{n}}+\mathrm{1}\right)}= \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{{n}−\sqrt{{n}}+\mathrm{1}}\:−\:\frac{\mathrm{1}}{{n}+\sqrt{{n}}+\mathrm{1}}= \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\:\left[\:\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}}\:+\:\frac{\mathrm{1}}{\mathrm{3}−\sqrt{\mathrm{2}}}−\frac{\mathrm{1}}{\mathrm{3}+\sqrt{\mathrm{2}}}+\frac{\mathrm{1}}{\mathrm{4}−\sqrt{\mathrm{3}}}−\frac{\mathrm{1}}{\mathrm{4}+\sqrt{\mathrm{3}}}+...\:\right]\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com