Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 167517 by Gbenga last updated on 18/Mar/22

ššŗ_(n=1) ^āˆž ((cos(n)sin(n))/(tan(n)))

$$\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\infty} {\boldsymbol{\sum}}}\frac{\boldsymbol{\mathrm{cos}}\left(\boldsymbol{\mathrm{n}}\right)\boldsymbol{\mathrm{sin}}\left(\boldsymbol{\mathrm{n}}\right)}{\boldsymbol{\mathrm{tan}}\left(\boldsymbol{\mathrm{n}}\right)} \\ $$

Answered by alephzero last updated on 18/Mar/22

((cos n sin n)/(tan n)) = ((cos n sin n)/((sin n)/(cos n))) =  = ((cos n sin n cos n)/(sin n)) = cos^2  n  ā‡’ Ī£_(n=1) ^āˆž  ((cos n sin n)/(tan n)) = Ī£_(n=1) ^āˆž cos^2  n  Ļ = lim_(nā†’āˆž)  āˆ£(a_(n+1) /a_n )āˆ£ = lim ((cos^2 (n+1))/(cos^2  n)) =  = (lim ((cos(n+1))/(cos n)))^2 ā‡’ indeterminate  ā‡’Ī£_(n=1) ^āˆž ((cos n sin n)/(tan n)) diverges to +āˆž

$$\frac{\mathrm{cos}\:{n}\:\mathrm{sin}\:{n}}{\mathrm{tan}\:{n}}\:=\:\frac{\mathrm{cos}\:{n}\:\mathrm{sin}\:{n}}{\frac{\mathrm{sin}\:{n}}{\mathrm{cos}\:{n}}}\:= \\ $$$$=\:\frac{\mathrm{cos}\:{n}\:\mathrm{sin}\:{n}\:\mathrm{cos}\:{n}}{\mathrm{sin}\:{n}}\:=\:\mathrm{cos}^{\mathrm{2}} \:{n} \\ $$$$\Rightarrow\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{cos}\:{n}\:\mathrm{sin}\:{n}}{\mathrm{tan}\:{n}}\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\mathrm{cos}^{\mathrm{2}} \:{n} \\ $$$$\rho\:=\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\mid\frac{{a}_{{n}+\mathrm{1}} }{{a}_{{n}} }\mid\:=\:\mathrm{lim}\:\frac{\mathrm{cos}^{\mathrm{2}} \left({n}+\mathrm{1}\right)}{\mathrm{cos}^{\mathrm{2}} \:{n}}\:= \\ $$$$=\:\left(\mathrm{lim}\:\frac{\mathrm{cos}\left({n}+\mathrm{1}\right)}{\mathrm{cos}\:{n}}\right)^{\mathrm{2}} \Rightarrow\:\mathrm{indeterminate} \\ $$$$\Rightarrow\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{cos}\:{n}\:\mathrm{sin}\:{n}}{\mathrm{tan}\:{n}}\:\mathrm{diverges}\:\mathrm{to}\:+\infty \\ $$

Commented by Gbenga last updated on 18/Mar/22

thanks sir

$$\boldsymbol{\mathrm{thanks}}\:\boldsymbol{\mathrm{sir}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com