Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 159775 by Ghaniy last updated on 22/Nov/21

Π_(n=1) ^∞ ((α^3 +β^2 )/3^n )= ?  in expanded form

$$\prod_{\mathrm{n}=\mathrm{1}} ^{\infty} \frac{\alpha^{\mathrm{3}} +\beta^{\mathrm{2}} }{\mathrm{3}^{\mathrm{n}} }=\:? \\ $$$$\mathrm{in}\:\mathrm{expanded}\:\mathrm{form} \\ $$

Answered by Canebulok last updated on 21/Nov/21

    Solution:      (x^3 +π^2 )∙Π_(n=1) ^(100)  (1/4^n ) = Π_(n=1) ^(100)  ((x^3 +π^2 )/4^n )      ∴   (x^3 +π^2 )∙Π_(n=1) ^(100)  (1/4^n ) = ((x^3 +π^2 )/4^((Σ_(n=1) ^(100)  n)) ) = ((x^3 +π^2 )/4^(5050) )

$$\: \\ $$$$\:\boldsymbol{\mathrm{Solution}}: \\ $$$$\: \\ $$$$\:\left(\mathrm{x}^{\mathrm{3}} +\pi^{\mathrm{2}} \right)\centerdot\underset{\mathrm{n}=\mathrm{1}} {\overset{\mathrm{100}} {\prod}}\:\frac{\mathrm{1}}{\mathrm{4}^{\mathrm{n}} }\:=\:\underset{\mathrm{n}=\mathrm{1}} {\overset{\mathrm{100}} {\prod}}\:\frac{\mathrm{x}^{\mathrm{3}} +\pi^{\mathrm{2}} }{\mathrm{4}^{\mathrm{n}} } \\ $$$$\: \\ $$$$\:\therefore \\ $$$$\:\left(\mathrm{x}^{\mathrm{3}} +\pi^{\mathrm{2}} \right)\centerdot\underset{\mathrm{n}=\mathrm{1}} {\overset{\mathrm{100}} {\prod}}\:\frac{\mathrm{1}}{\mathrm{4}^{\mathrm{n}} }\:=\:\frac{\mathrm{x}^{\mathrm{3}} +\pi^{\mathrm{2}} }{\mathrm{4}^{\left(\underset{\mathrm{n}=\mathrm{1}} {\overset{\mathrm{100}} {\sum}}\:\mathrm{n}\right)} }\:=\:\frac{\mathrm{x}^{\mathrm{3}} +\pi^{\mathrm{2}} }{\mathrm{4}^{\mathrm{5050}} } \\ $$$$\: \\ $$$$\: \\ $$

Commented by Ghaniy last updated on 22/Nov/21

Thanks sir....I wasn′t sure   I thought the 100 will affect (α^3 +β^2 ) as in (((α^3 +β^2 )^∞ )/3^(5050) )

$$\mathrm{Thanks}\:\mathrm{sir}....\mathrm{I}\:\mathrm{wasn}'\mathrm{t}\:\mathrm{sure}\: \\ $$$$\mathrm{I}\:\mathrm{thought}\:\mathrm{the}\:\mathrm{100}\:\mathrm{will}\:\mathrm{affect}\:\left(\alpha^{\mathrm{3}} +\beta^{\mathrm{2}} \right)\:\mathrm{as}\:\mathrm{in}\:\frac{\left(\alpha^{\mathrm{3}} +\beta^{\mathrm{2}} \right)^{\infty} }{\mathrm{3}^{\mathrm{5050}} } \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com