Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 139560 by Dwaipayan Shikari last updated on 28/Apr/21

Σ_(n_1 +2n_2 +3n_3 +..+rn_r =n) ^n (1/(n_1 !n_2 !n_3 !..n_r !1^n_1  2^n_2  3^n_3  4^n_4  ...r^n_r  ))=1  0≥n_1 ,n_2 ,n_3 ,..≥n  Prove the above identity

$$\underset{{n}_{\mathrm{1}} +\mathrm{2}{n}_{\mathrm{2}} +\mathrm{3}{n}_{\mathrm{3}} +..+{rn}_{{r}} ={n}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{n}_{\mathrm{1}} !{n}_{\mathrm{2}} !{n}_{\mathrm{3}} !..{n}_{{r}} !\mathrm{1}^{{n}_{\mathrm{1}} } \mathrm{2}^{{n}_{\mathrm{2}} } \mathrm{3}^{{n}_{\mathrm{3}} } \mathrm{4}^{{n}_{\mathrm{4}} } ...{r}^{{n}_{{r}} } }=\mathrm{1} \\ $$$$\mathrm{0}\geqslant{n}_{\mathrm{1}} ,{n}_{\mathrm{2}} ,{n}_{\mathrm{3}} ,..\geqslant{n} \\ $$$$\mathrm{P}{rove}\:\mathrm{t}{he}\:{above}\:{identity} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com