Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 93509 by Shakhzod last updated on 13/May/20

Σ_(n=1) ^∞ (1/(n^2 +5n+6))

$$\sum_{{n}=\mathrm{1}} ^{\infty} \frac{\mathrm{1}}{{n}^{\mathrm{2}} +\mathrm{5}{n}+\mathrm{6}}\: \\ $$

Commented by Shakhzod last updated on 13/May/20

Help me who can solve it.

$${Help}\:{me}\:{who}\:{can}\:{solve}\:{it}. \\ $$

Commented by PRITHWISH SEN 2 last updated on 13/May/20

Σ_(n=1) ^∞ (1/((n+2)(n+3))) = Σ_(n=1) ^∞ [(1/(n+2))−(1/(n+3))]  =Σ_(n=1) ^∞ [(1/n)−(1/(n+1))] −(2/3)= {lim_(n→∞) [1−(1/(n+1))]}−(2/3)  =(1/3)

$$\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{n}+\mathrm{2}\right)\left(\mathrm{n}+\mathrm{3}\right)}\:=\:\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left[\frac{\mathrm{1}}{\mathrm{n}+\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{n}+\mathrm{3}}\right] \\ $$$$=\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left[\frac{\mathrm{1}}{\mathrm{n}}−\frac{\mathrm{1}}{\mathrm{n}+\mathrm{1}}\right]\:−\frac{\mathrm{2}}{\mathrm{3}}=\:\left\{\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\left[\mathrm{1}−\frac{\mathrm{1}}{\mathrm{n}+\mathrm{1}}\right]\right\}−\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}} \\ $$

Commented by john santu last updated on 13/May/20

(1/(n^2 +5n+6)) = (1/((n+3)(n+2)))  = (1/(n+2))−(1/(n+3)) .  Σ_(n = 1) ^∞  ((1/(n+2))−(1/(n+3))) = (1/3)−(1/4)+(1/4)−(1/5)  +(1/5)−(1/6)+...+ lim_(t→∞)  ((1/(t+2))−(1/(t+3)))  = (1/3)−0 = (1/3).

$$\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} +\mathrm{5n}+\mathrm{6}}\:=\:\frac{\mathrm{1}}{\left(\mathrm{n}+\mathrm{3}\right)\left(\mathrm{n}+\mathrm{2}\right)} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{n}+\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{n}+\mathrm{3}}\:. \\ $$$$\underset{\mathrm{n}\:=\:\mathrm{1}} {\overset{\infty} {\sum}}\:\left(\frac{\mathrm{1}}{\mathrm{n}+\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{n}+\mathrm{3}}\right)\:=\:\frac{\mathrm{1}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{5}} \\ $$$$+\frac{\mathrm{1}}{\mathrm{5}}−\frac{\mathrm{1}}{\mathrm{6}}+...+\:\underset{\mathrm{t}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{\mathrm{1}}{\mathrm{t}+\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{t}+\mathrm{3}}\right) \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{3}}−\mathrm{0}\:=\:\frac{\mathrm{1}}{\mathrm{3}}.\: \\ $$$$ \\ $$

Commented by Shakhzod last updated on 13/May/20

Thank you so much.

$${Thank}\:{you}\:{so}\:{much}. \\ $$

Commented by Shakhzod last updated on 13/May/20

Thank youfriend.

$${Thank}\:{youfriend}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com