Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 145451 by math55 last updated on 05/Jul/21

Σ_(n=1) ^∞ (−1)^(n−1) ((30^(2n−1) )/((2n−1)!))

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \frac{\mathrm{30}^{\mathrm{2}{n}−\mathrm{1}} }{\left(\mathrm{2}{n}−\mathrm{1}\right)!} \\ $$

Answered by Olaf_Thorendsen last updated on 05/Jul/21

S = Σ_(n=1) ^∞ (−1)^(n−1) ((30^(2n−1) )/((2n−1)!))  S = Σ_(n=0) ^∞ (−1)^n ((30^(2n+1) )/((2n+1)!))  S = sin(30)  If is 30°, S = (1/2)

$$\mathrm{S}\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \frac{\mathrm{30}^{\mathrm{2}{n}−\mathrm{1}} }{\left(\mathrm{2}{n}−\mathrm{1}\right)!} \\ $$$$\mathrm{S}\:=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \frac{\mathrm{30}^{\mathrm{2}{n}+\mathrm{1}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)!} \\ $$$$\mathrm{S}\:=\:\mathrm{sin}\left(\mathrm{30}\right) \\ $$$$\mathrm{If}\:\mathrm{is}\:\mathrm{30}°,\:\mathrm{S}\:=\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Commented by math55 last updated on 05/Jul/21

please sir is there anyway to prove that it's 1/2 without passing through sin30°

Terms of Service

Privacy Policy

Contact: info@tinkutara.com