Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 153009 by SANOGO last updated on 04/Sep/21

montrer que:  2cos(π/2^n )=(√(2 +(√(2+...+(√2)))))

$${montrer}\:{que}: \\ $$$$\mathrm{2}{cos}\frac{\pi}{\mathrm{2}^{{n}} }=\sqrt{\mathrm{2}\:+\sqrt{\mathrm{2}+...+\sqrt{\mathrm{2}}}} \\ $$$$ \\ $$

Commented by mr W last updated on 04/Sep/21

please make your posts better readable!  try to set the defaut font size 20.  try to avoid using extremly large or  extremly small fonts!

$${please}\:{make}\:{your}\:{posts}\:{better}\:{readable}! \\ $$$${try}\:{to}\:{set}\:{the}\:{defaut}\:{font}\:{size}\:\mathrm{20}. \\ $$$${try}\:{to}\:{avoid}\:{using}\:{extremly}\:{large}\:{or} \\ $$$${extremly}\:{small}\:{fonts}! \\ $$

Commented by SANOGO last updated on 04/Sep/21

ok thank you i understood

$${ok}\:{thank}\:{you}\:{i}\:{understood} \\ $$

Answered by puissant last updated on 04/Sep/21

montrons alors que ∀n∈N, 2cos(π/2^n )=(√(2+(√(2+....+(√2)))))  ⇒ cos(π/2^n )=(1/2)(√(2+(√(2+(√(2+..(√2)))))))  →pour n=1 la propriete^�  est vraie..  →soit n∈N, supposons la propriete^�  vraie  au rang n et prouvons au rang n+1.  Remarquons au pre^� alable que ∀x∈[0;(π/2)]  comme cos^2 x=((cos2x+1)/2)⇒cos((x/2))=(√((cosx+1)/2))  et cos((π/2^(n+1) ))=cos((1/2)((π/2^n )))  =(√((1/2)(cos((π/2^n ))+1)))  =(√((1/2)((1/2)(√(2+(√(2+...+(√2)))))+1))) on a ainsi  n radicaux d′apres l′hypothese de reccurence.  =(1/2)(√(2+(√(2+...+(√2)))))  (n+1 radicaux)  on prouve ainsi la propriete^�  par reccurence..

$${montrons}\:{alors}\:{que}\:\forall{n}\in\mathbb{N},\:\mathrm{2}{cos}\frac{\pi}{\mathrm{2}^{{n}} }=\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+....+\sqrt{\mathrm{2}}}} \\ $$$$\Rightarrow\:{cos}\frac{\pi}{\mathrm{2}^{{n}} }=\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+..\sqrt{\mathrm{2}}}}} \\ $$$$\rightarrow{pour}\:{n}=\mathrm{1}\:{la}\:{propriet}\acute {{e}}\:{est}\:{vraie}.. \\ $$$$\rightarrow{soit}\:{n}\in\mathbb{N},\:{supposons}\:{la}\:{propriet}\acute {{e}}\:{vraie} \\ $$$${au}\:{rang}\:{n}\:{et}\:{prouvons}\:{au}\:{rang}\:{n}+\mathrm{1}. \\ $$$${Remarquons}\:{au}\:{pr}\acute {{e}alable}\:{que}\:\forall{x}\in\left[\mathrm{0};\frac{\pi}{\mathrm{2}}\right] \\ $$$${comme}\:{cos}^{\mathrm{2}} {x}=\frac{{cos}\mathrm{2}{x}+\mathrm{1}}{\mathrm{2}}\Rightarrow{cos}\left(\frac{{x}}{\mathrm{2}}\right)=\sqrt{\frac{{cosx}+\mathrm{1}}{\mathrm{2}}} \\ $$$${et}\:{cos}\left(\frac{\pi}{\mathrm{2}^{{n}+\mathrm{1}} }\right)={cos}\left(\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\pi}{\mathrm{2}^{{n}} }\right)\right) \\ $$$$=\sqrt{\frac{\mathrm{1}}{\mathrm{2}}\left({cos}\left(\frac{\pi}{\mathrm{2}^{{n}} }\right)+\mathrm{1}\right)} \\ $$$$=\sqrt{\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+...+\sqrt{\mathrm{2}}}}+\mathrm{1}\right)}\:{on}\:{a}\:{ainsi} \\ $$$${n}\:{radicaux}\:{d}'{apres}\:{l}'{hypothese}\:{de}\:{reccurence}. \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+...+\sqrt{\mathrm{2}}}}\:\:\left({n}+\mathrm{1}\:{radicaux}\right) \\ $$$${on}\:{prouve}\:{ainsi}\:{la}\:{propriet}\acute {{e}}\:{par}\:{reccurence}.. \\ $$

Commented by SANOGO last updated on 04/Sep/21

merci bien que Dieu te benisse

$${merci}\:{bien}\:{que}\:{Dieu}\:{te}\:{benisse} \\ $$

Answered by som(math1967) last updated on 04/Sep/21

cos(𝛑/4)=(1/( (√2)))  2cos(𝛑/4)=(√2) ∴2cos(𝛑/2^2 )=(√2)  cos(𝛑/8)=(√((1+cos(𝛑/4))/2))  [∵cos(𝛉/2)=(√((1+cos𝛉)/2)) ]  cos(𝛑/8)=(√(((√2)+1)/(2(√2))))=(√((2+(√2))/4))=  2cos(𝛑/2^3 )=(√(2+(√2)))  same way  2cos(𝛑/2^4 )=(√(2+(√(2+(√2)))))  2cos(𝛑/2^5 )=(√(2+(√(2+(√(2+(√2)))))))  .......2cos(𝛑/2^n )=(√(2+(√(2+(√(2+...(√2)))))))

$$\boldsymbol{{cos}}\frac{\boldsymbol{\pi}}{\mathrm{4}}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}} \\ $$$$\mathrm{2}\boldsymbol{{cos}}\frac{\boldsymbol{\pi}}{\mathrm{4}}=\sqrt{\mathrm{2}}\:\therefore\mathrm{2}\boldsymbol{{cos}}\frac{\boldsymbol{\pi}}{\mathrm{2}^{\mathrm{2}} }=\sqrt{\mathrm{2}} \\ $$$$\boldsymbol{{cos}}\frac{\boldsymbol{\pi}}{\mathrm{8}}=\sqrt{\frac{\mathrm{1}+\boldsymbol{{cos}}\frac{\boldsymbol{\pi}}{\mathrm{4}}}{\mathrm{2}}}\:\:\left[\because\boldsymbol{{cos}}\frac{\boldsymbol{\theta}}{\mathrm{2}}=\sqrt{\frac{\mathrm{1}+\boldsymbol{{cos}\theta}}{\mathrm{2}}}\:\right] \\ $$$$\boldsymbol{{cos}}\frac{\boldsymbol{\pi}}{\mathrm{8}}=\sqrt{\frac{\sqrt{\mathrm{2}}+\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}}=\sqrt{\frac{\mathrm{2}+\sqrt{\mathrm{2}}}{\mathrm{4}}}= \\ $$$$\mathrm{2}\boldsymbol{{cos}}\frac{\boldsymbol{\pi}}{\mathrm{2}^{\mathrm{3}} }=\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}} \\ $$$${same}\:\boldsymbol{{way}}\:\:\mathrm{2}\boldsymbol{{cos}}\frac{\boldsymbol{\pi}}{\mathrm{2}^{\mathrm{4}} }=\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}} \\ $$$$\mathrm{2}\boldsymbol{{cos}}\frac{\boldsymbol{\pi}}{\mathrm{2}^{\mathrm{5}} }=\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}}} \\ $$$$.......\mathrm{2}\boldsymbol{{cos}}\frac{\boldsymbol{\pi}}{\mathrm{2}^{\boldsymbol{{n}}} }=\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+...\sqrt{\mathrm{2}}}}} \\ $$

Commented by SANOGO last updated on 04/Sep/21

merci beaucou le dur

$${merci}\:{beaucou}\:{le}\:{dur} \\ $$

Answered by Jonathanwaweh last updated on 05/Sep/21

montrer qu:  2cos(π/2^n )=(√(2 +(√(2+...+(√2)))))  posons U_n =(√(2+(√(2+...+(√(2 )))))) alors U_(n+1) =(√(U_n +2))  soit p(n) :∀nεN n≥2 2cos(Π/2^n )=U_n   1−initialisation(facile)  2−heredite  pour n≥2 fixe^′  supposons p(n) vraie et montrons que p(n+1) l′est aussi  ie 2cos(Π/2^(n+1) )=U_(n+1) . on a cos((Π/2^n ))=cos((Π/2^(n+1) )×2)                                                  =2cos^2 ((Π/2^(n+1) ))−1  donc 2cos((Π/2^(n+1) ))=4cos^2 ((Π/2^(n+1) ))−2  ie (√(2cos((Π/2^n ))+2))=2cos((Π/2^(n+1) ))  d^′ ou ona U_(n+1) =2cos((Π/2^(n+1) ))  conclusion:...

$${montrer}\:{qu}: \\ $$$$\mathrm{2}{cos}\frac{\pi}{\mathrm{2}^{{n}} }=\sqrt{\mathrm{2}\:+\sqrt{\mathrm{2}+...+\sqrt{\mathrm{2}}}} \\ $$$${posons}\:{U}_{{n}} =\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+...+\sqrt{\mathrm{2}\:}}}\:{alors}\:{U}_{{n}+\mathrm{1}} =\sqrt{{U}_{{n}} +\mathrm{2}} \\ $$$${soit}\:{p}\left({n}\right)\::\forall{n}\epsilon{N}\:{n}\geqslant\mathrm{2}\:\mathrm{2}{cos}\frac{\Pi}{\mathrm{2}^{{n}} }={U}_{{n}} \\ $$$$\mathrm{1}−{initialisation}\left({facile}\right) \\ $$$$\mathrm{2}−{heredite} \\ $$$${pour}\:{n}\geqslant\mathrm{2}\:{fixe}^{'} \:{supposons}\:{p}\left({n}\right)\:{vraie}\:{et}\:{montrons}\:{que}\:{p}\left({n}+\mathrm{1}\right)\:{l}'{est}\:{aussi} \\ $$$${ie}\:\mathrm{2}{cos}\frac{\Pi}{\mathrm{2}^{{n}+\mathrm{1}} }={U}_{{n}+\mathrm{1}} .\:{on}\:{a}\:{cos}\left(\frac{\Pi}{\mathrm{2}^{{n}} }\right)={cos}\left(\frac{\Pi}{\mathrm{2}^{{n}+\mathrm{1}} }×\mathrm{2}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{2}{cos}^{\mathrm{2}} \left(\frac{\Pi}{\mathrm{2}^{{n}+\mathrm{1}} }\right)−\mathrm{1} \\ $$$${donc}\:\mathrm{2}{cos}\left(\frac{\Pi}{\mathrm{2}^{{n}+\mathrm{1}} }\right)=\mathrm{4}{cos}^{\mathrm{2}} \left(\frac{\Pi}{\mathrm{2}^{{n}+\mathrm{1}} }\right)−\mathrm{2} \\ $$$${ie}\:\sqrt{\mathrm{2}{cos}\left(\frac{\Pi}{\mathrm{2}^{{n}} }\right)+\mathrm{2}}=\mathrm{2}{cos}\left(\frac{\Pi}{\mathrm{2}^{{n}+\mathrm{1}} }\right) \\ $$$${d}^{'} {ou}\:{ona}\:{U}_{{n}+\mathrm{1}} =\mathrm{2}{cos}\left(\frac{\Pi}{\mathrm{2}^{{n}+\mathrm{1}} }\right) \\ $$$${conclusion}:... \\ $$

Commented by SANOGO last updated on 05/Sep/21

merci bien mon chef

$${merci}\:{bien}\:{mon}\:{chef} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com