Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 192604 by sciencestudentW last updated on 22/May/23

many people say that the 0^(0 ) is an uninfinity  ones of them say that 0^0  is infinity and equal to 1!  what do you think wich ones of them  say right?

$${many}\:{people}\:{say}\:{that}\:{the}\:\mathrm{0}^{\mathrm{0}\:} {is}\:{an}\:{uninfinity} \\ $$$${ones}\:{of}\:{them}\:{say}\:{that}\:\mathrm{0}^{\mathrm{0}} \:{is}\:{infinity}\:{and}\:{equal}\:{to}\:\mathrm{1}! \\ $$$${what}\:{do}\:{you}\:{think}\:{wich}\:{ones}\:{of}\:{them} \\ $$$${say}\:{right}? \\ $$

Commented by Frix last updated on 22/May/23

There′s no right or wrong. It depends on  how you define it.  0^n =0∀n∈N\{0} ⇒ we can define 0^0 =0  r^0 =1∀r∈R\{0} ⇒ we can define 0^0 =1  ...  lim_(x→0)  (x/(sin x)) =1     lim_(x→0)  ((sin x)/x) =1  lim_(x→0)  (x^2 /(sin x)) =0     lim_(x→0)  ((sin x)/x^2 ) =undefined  ...

$$\mathrm{There}'\mathrm{s}\:\mathrm{no}\:\mathrm{right}\:\mathrm{or}\:\mathrm{wrong}.\:\mathrm{It}\:\mathrm{depends}\:\mathrm{on} \\ $$$$\mathrm{how}\:\mathrm{you}\:\mathrm{define}\:\mathrm{it}. \\ $$$$\mathrm{0}^{{n}} =\mathrm{0}\forall{n}\in\mathbb{N}\backslash\left\{\mathrm{0}\right\}\:\Rightarrow\:\mathrm{we}\:\mathrm{can}\:\mathrm{define}\:\mathrm{0}^{\mathrm{0}} =\mathrm{0} \\ $$$${r}^{\mathrm{0}} =\mathrm{1}\forall{r}\in\mathbb{R}\backslash\left\{\mathrm{0}\right\}\:\Rightarrow\:\mathrm{we}\:\mathrm{can}\:\mathrm{define}\:\mathrm{0}^{\mathrm{0}} =\mathrm{1} \\ $$$$... \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}}{\mathrm{sin}\:{x}}\:=\mathrm{1}\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:{x}}{{x}}\:=\mathrm{1} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}^{\mathrm{2}} }{\mathrm{sin}\:{x}}\:=\mathrm{0}\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:{x}}{{x}^{\mathrm{2}} }\:=\mathrm{undefined} \\ $$$$... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com