Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 64541 by Chi Mes Try last updated on 19/Jul/19

lol....QUESTION OF  THE DAY    SHOW FULL WORKINGS    ∫x((((1−x^2 )Ln(1+x^2 )+(1+x^2 )−(1−x^2 )Ln(1−x^2 ))/((1−x^4 )(1+x^2 ))))e^((x^2 −1)/(x^2 +1)) dx

$${lol}....{QUESTION}\:{OF}\:\:{THE}\:{DAY} \\ $$$$ \\ $$$${SHOW}\:{FULL}\:{WORKINGS} \\ $$$$ \\ $$$$\int{x}\left(\frac{\left(\mathrm{1}−{x}^{\mathrm{2}} \right){Ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)+\left(\mathrm{1}+{x}^{\mathrm{2}} \right)−\left(\mathrm{1}−{x}^{\mathrm{2}} \right){Ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)}{\left(\mathrm{1}−{x}^{\mathrm{4}} \right)\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}\right){e}^{\frac{{x}^{\mathrm{2}} −\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{1}}} {dx} \\ $$

Answered by MJS last updated on 19/Jul/19

t=((1−x^2 )/(1+x^2 )) → dx=−(((1+x^2 )^2 )/(4x))dx  (1/4)∫(ln t−(1/t))e^(−t) dt=  =(1/4)(∫((ln t)/e^t )dt−∫(dt/(te^t )))=       the 2^(nd)  one by parts            ∫u′v=uv−∫uv′            u′=(1/t) → u=ln t            v=e^(−t)  → v′=−e^(−t)        ∫(dt/(te^t ))=((ln t)/e^t )+∫((ln t)/e^t )dt  =−((ln t)/(4e^t ))=(1/4)e^(−((1−x^2 )/(1+x^2 ))) ln ((1+x^2 )/(1−x^2 )) +C

$${t}=\frac{\mathrm{1}−{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{2}} }\:\rightarrow\:{dx}=−\frac{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{\mathrm{4}{x}}{dx} \\ $$$$\frac{\mathrm{1}}{\mathrm{4}}\int\left(\mathrm{ln}\:{t}−\frac{\mathrm{1}}{{t}}\right)\mathrm{e}^{−{t}} {dt}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\left(\int\frac{\mathrm{ln}\:{t}}{\mathrm{e}^{{t}} }{dt}−\int\frac{{dt}}{{t}\mathrm{e}^{{t}} }\right)= \\ $$$$\:\:\:\:\:\mathrm{the}\:\mathrm{2}^{\mathrm{nd}} \:\mathrm{one}\:\mathrm{by}\:\mathrm{parts} \\ $$$$\:\:\:\:\:\:\:\:\:\:\int{u}'{v}={uv}−\int{uv}' \\ $$$$\:\:\:\:\:\:\:\:\:\:{u}'=\frac{\mathrm{1}}{{t}}\:\rightarrow\:{u}=\mathrm{ln}\:{t} \\ $$$$\:\:\:\:\:\:\:\:\:\:{v}=\mathrm{e}^{−{t}} \:\rightarrow\:{v}'=−\mathrm{e}^{−{t}} \\ $$$$\:\:\:\:\:\int\frac{{dt}}{{t}\mathrm{e}^{{t}} }=\frac{\mathrm{ln}\:{t}}{\mathrm{e}^{{t}} }+\int\frac{\mathrm{ln}\:{t}}{\mathrm{e}^{{t}} }{dt} \\ $$$$=−\frac{\mathrm{ln}\:{t}}{\mathrm{4e}^{{t}} }=\frac{\mathrm{1}}{\mathrm{4}}\mathrm{e}^{−\frac{\mathrm{1}−{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{2}} }} \mathrm{ln}\:\frac{\mathrm{1}+{x}^{\mathrm{2}} }{\mathrm{1}−{x}^{\mathrm{2}} }\:+{C} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com