Question Number 93957 by O Predador last updated on 16/May/20 | ||
![]() | ||
$$\: \\ $$$$\:\mathrm{log}_{\sqrt{\mathrm{17}}−\sqrt{\mathrm{2}}} \left(\frac{\mathrm{15}}{\sqrt{\mathrm{19}+\sqrt{\mathrm{136}}}}\right)\mathrm{x}^{\mathrm{2}} \:−\:\mathrm{log}_{\sqrt{\mathrm{19}}−\sqrt{\mathrm{3}}} \left(\frac{\mathrm{1}}{\mathrm{22}−\sqrt{\mathrm{228}}}\right)\mathrm{x}\:=\:\mathrm{3} \\ $$$$\: \\ $$$$\:\mathrm{x}\:=\:? \\ $$ | ||
Commented by PRITHWISH SEN 2 last updated on 16/May/20 | ||
![]() | ||
$$\sqrt{\mathrm{19}+\sqrt{\mathrm{136}}}\:=\:\frac{\sqrt{\mathrm{34}}+\mathrm{2}}{\sqrt{\mathrm{2}}}\:\Rightarrow\frac{\mathrm{15}\sqrt{\mathrm{2}}}{\sqrt{\mathrm{34}}+\mathrm{2}}\:=\:\sqrt{\mathrm{17}}−\sqrt{\mathrm{2}} \\ $$$$\mathrm{22}−\sqrt{\mathrm{228}}=\left(\sqrt{\mathrm{19}}−\sqrt{\mathrm{3}}\right)^{\mathrm{2}} \\ $$$$\mathrm{log}_{\sqrt{\mathrm{17}}−\sqrt{\mathrm{2}}} \left(\sqrt{\mathrm{17}}−\sqrt{\mathrm{2}}\right)\mathrm{x}^{\mathrm{2}} −\mathrm{log}_{\sqrt{\mathrm{19}}−\sqrt{\mathrm{3}}} \mathrm{x}+\mathrm{2}=\mathrm{3} \\ $$$$\mathrm{2log}_{\sqrt{\mathrm{17}}−\sqrt{\mathrm{2}}} \mathrm{x}=\mathrm{log}_{\sqrt{\mathrm{19}}−\sqrt{\mathrm{3}}} \mathrm{x} \\ $$$$\mathrm{and}\:\mathrm{the}\:\mathrm{only}\:\mathrm{possible}\:\mathrm{solution}\:\mathrm{for}\:\mathrm{this}\:\mathrm{is} \\ $$$$\boldsymbol{\mathrm{x}}=\mathrm{1} \\ $$ | ||
Commented by O Predador last updated on 25/May/20 | ||
![]() | ||
$$\:\mathrm{Simplifying}\:\:\mathrm{the}\:\:\mathrm{radicals}\:\:\mathrm{shouldn}'\mathrm{t}\:\:\mathrm{we}\:\:\mathrm{consider} \\ $$$$\:\mathrm{it}\:\mathrm{a}\:\:\mathrm{second}\:\:\mathrm{degree}\:\:\mathrm{equation}? \\ $$ | ||
Commented by O Predador last updated on 25/May/20 | ||
![]() |