Question and Answers Forum

All Questions      Topic List

Operation Research Questions

Previous in All Question      Next in All Question      

Previous in Operation Research      Next in Operation Research      

Question Number 176379 by doline last updated on 17/Sep/22

lineariser sin^5 (x)

$${lineariser}\:{sin}^{\mathrm{5}} \left({x}\right) \\ $$

Answered by a.lgnaoui last updated on 17/Sep/22

sin^5 (x)=(((e^(ix) −e^(−ix) )/2))^5   =(1/2^5 )([e^(5ix) −5e^(4ix) e^(−ix) +10e^(3ix) e^(−2ix) −10e^(2ix) e^(−3ix) +5e^(ix) e^(−4ix) −e^(−5ix) )  =(1/2^5 )[(e^(5ix) −5e^(3ix) +10e^(ix) −10e^(−ix) +5e^(−3ix) −e^(−5ix) )  =(1/2^5 )[(e^(5ix) −e^(−5ix) )−5(e^(3ix) −e^(−3ix) )+10(e^(ix) −e^(−ix) )]  =(1/2^4 )(sin^5 (x)−5sin^3 (x)+10sin( x)]

$$\mathrm{sin}\:^{\mathrm{5}} \left({x}\right)=\left(\frac{{e}^{{ix}} −{e}^{−{ix}} }{\mathrm{2}}\right)^{\mathrm{5}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{5}} }\left(\left[{e}^{\mathrm{5}{ix}} −\mathrm{5}{e}^{\mathrm{4}{ix}} {e}^{−{ix}} +\mathrm{10}{e}^{\mathrm{3}{ix}} {e}^{−\mathrm{2}{ix}} −\mathrm{10}{e}^{\mathrm{2}{ix}} {e}^{−\mathrm{3}{ix}} +\mathrm{5}{e}^{{ix}} {e}^{−\mathrm{4}{ix}} −{e}^{−\mathrm{5}{ix}} \right)\right. \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{5}} }\left[\left({e}^{\mathrm{5}{ix}} −\mathrm{5}{e}^{\mathrm{3}{ix}} +\mathrm{10}{e}^{{ix}} −\mathrm{10}{e}^{−{ix}} +\mathrm{5}{e}^{−\mathrm{3}{ix}} −{e}^{−\mathrm{5}{ix}} \right)\right. \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{5}} }\left[\left({e}^{\mathrm{5}{ix}} −{e}^{−\mathrm{5}{ix}} \right)−\mathrm{5}\left({e}^{\mathrm{3}{ix}} −{e}^{−\mathrm{3}{ix}} \right)+\mathrm{10}\left({e}^{{ix}} −{e}^{−{ix}} \right)\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{4}} }\left(\mathrm{sin}\:^{\mathrm{5}} \left({x}\right)−\mathrm{5sin}\:^{\mathrm{3}} \left({x}\right)+\mathrm{10sin}\left(\:{x}\right)\right] \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com