Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 195453 by Rodier97 last updated on 02/Aug/23

    lim_(x→+∞  )  x ln(((e^x + 1)/(e^x −1)))  ?

$$\:\:\:\:\mathrm{lim}_{{x}\rightarrow+\infty\:\:} \:{x}\:{ln}\left(\frac{{e}^{{x}} +\:\mathrm{1}}{{e}^{{x}} −\mathrm{1}}\right)\:\:? \\ $$

Commented by Frix last updated on 02/Aug/23

0

$$\mathrm{0} \\ $$

Answered by MM42 last updated on 02/Aug/23

lim_(x→∞)  ln(((e^x +1)/(e^x −1)))^x    ★  A=(((e^x +1)/(e^x −1)))^x ⇒lim_(x→∞) A=e^(lim_(x→∞)  (((e^x +1)/(e^x −1))−1)x)     =e^(lim_(x→∞)  (((e^x +1)/(e^x −1))−1)x)  =e^(lim_(x→∞)  (((2x)/(e^x −1)))) =e^0 =1  ⇒★=ln1=0 ✓

$${lim}_{{x}\rightarrow\infty} \:{ln}\left(\frac{{e}^{{x}} +\mathrm{1}}{{e}^{{x}} −\mathrm{1}}\right)^{{x}} \:\:\:\bigstar \\ $$$${A}=\left(\frac{{e}^{{x}} +\mathrm{1}}{{e}^{{x}} −\mathrm{1}}\right)^{{x}} \Rightarrow{lim}_{{x}\rightarrow\infty} {A}={e}^{{lim}_{{x}\rightarrow\infty} \:\left(\frac{{e}^{{x}} +\mathrm{1}}{{e}^{{x}} −\mathrm{1}}−\mathrm{1}\right){x}} \:\: \\ $$$$={e}^{{lim}_{{x}\rightarrow\infty} \:\left(\frac{{e}^{{x}} +\mathrm{1}}{{e}^{{x}} −\mathrm{1}}−\mathrm{1}\right){x}} \:={e}^{{lim}_{{x}\rightarrow\infty} \:\left(\frac{\mathrm{2}{x}}{{e}^{{x}} −\mathrm{1}}\right)} ={e}^{\mathrm{0}} =\mathrm{1} \\ $$$$\Rightarrow\bigstar={ln}\mathrm{1}=\mathrm{0}\:\checkmark \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com