Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 110260 by bemath last updated on 28/Aug/20

lim_(x→∞)  x cos ((1/x)) ?

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{x}\:\mathrm{cos}\:\left(\frac{\mathrm{1}}{{x}}\right)\:? \\ $$

Answered by john santu last updated on 28/Aug/20

we know that −1≤cos (1/x)≤1   so lim_(x→∞) xcos ((1/x))= ∞

$${we}\:{know}\:{that}\:−\mathrm{1}\leqslant\mathrm{cos}\:\frac{\mathrm{1}}{{x}}\leqslant\mathrm{1}\: \\ $$$${so}\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}{x}\mathrm{cos}\:\left(\frac{\mathrm{1}}{{x}}\right)=\:\infty \\ $$

Commented by Her_Majesty last updated on 28/Aug/20

I don′t think that′s true  let x=(1/t)⇒lim_(t→0)  ((cost)/t)  but (1/t)<0 for t<0 and (1/t)>0 for t>0  ⇒ limit does not exist

$${I}\:{don}'{t}\:{think}\:{that}'{s}\:{true} \\ $$$${let}\:{x}=\frac{\mathrm{1}}{{t}}\Rightarrow{lim}_{{t}\rightarrow\mathrm{0}} \:\frac{{cost}}{{t}} \\ $$$${but}\:\frac{\mathrm{1}}{{t}}<\mathrm{0}\:{for}\:{t}<\mathrm{0}\:{and}\:\frac{\mathrm{1}}{{t}}>\mathrm{0}\:{for}\:{t}>\mathrm{0} \\ $$$$\Rightarrow\:{limit}\:{does}\:{not}\:{exist} \\ $$

Commented by john santu last updated on 28/Aug/20

no

$${no} \\ $$

Commented by john santu last updated on 28/Aug/20

Commented by john santu last updated on 28/Aug/20

clear lim_(x→∞)  x.cos ((1/x))=∞

$${clear}\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{x}.\mathrm{cos}\:\left(\frac{\mathrm{1}}{{x}}\right)=\infty \\ $$

Commented by Her_Majesty last updated on 28/Aug/20

you are right. my conclusion is wrong because  we′re only interested in lim_(t→0^+ )

$${you}\:{are}\:{right}.\:{my}\:{conclusion}\:{is}\:{wrong}\:{because} \\ $$$${we}'{re}\:{only}\:{interested}\:{in}\:{lim}_{{t}\rightarrow\mathrm{0}^{+} } \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com