Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 207339 by Ghisom last updated on 12/May/24

lim_(x→∞)  (((x+a)^(1/x) −x^(1/x) )/((x+b)^(1/x) −x^(1/x) )) =?

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\left({x}+{a}\right)^{\mathrm{1}/{x}} −{x}^{\mathrm{1}/{x}} }{\left({x}+{b}\right)^{\mathrm{1}/{x}} −{x}^{\mathrm{1}/{x}} }\:=? \\ $$

Answered by sniper237 last updated on 12/May/24

 (a/b)   cause  =^(X=1/x)  lim_(X→0)  (((1+aX)^X −1)/((1+bX)^X −1))    as Xln(1+aX)∼ aX^2   then  (1+aX)^X  ≈ e^(aX^2 ) ∼ 1+aX^2

$$\:\frac{{a}}{{b}}\:\:\:{cause}\:\:\overset{{X}=\mathrm{1}/{x}} {=}\:\underset{{X}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\mathrm{1}+{aX}\right)^{{X}} −\mathrm{1}}{\left(\mathrm{1}+{bX}\right)^{{X}} −\mathrm{1}}\: \\ $$$$\:{as}\:{Xln}\left(\mathrm{1}+{aX}\right)\sim\:{aX}^{\mathrm{2}} \\ $$$${then}\:\:\left(\mathrm{1}+{aX}\right)^{{X}} \:\approx\:{e}^{{aX}^{\mathrm{2}} } \sim\:\mathrm{1}+{aX}^{\mathrm{2}} \: \\ $$

Commented by Ghisom last updated on 13/May/24

thank you

$$\mathrm{thank}\:\mathrm{you} \\ $$

Answered by mathzup last updated on 12/May/24

l(x)=((x^(1/x) ((1+(a/x))^(1/x) −1))/(x^(1/x) ((1+(b/x))^(1/x) −1)))  we have (1+(a/x))^(1/x) −1=e^((1/x)ln(1+(a/x)))   ∼e^((1/x)((a/x))) −1=e^(a/x^2 ) −1 ∼(a/x^2 )   (1+(b/x))^(1/x) −1∼(b/x^2 ) ⇒  lim_(x→+∞) l(x)=(a/b)       (b≠0)

$${l}\left({x}\right)=\frac{{x}^{\frac{\mathrm{1}}{{x}}} \left(\left(\mathrm{1}+\frac{{a}}{{x}}\right)^{\frac{\mathrm{1}}{{x}}} −\mathrm{1}\right)}{{x}^{\frac{\mathrm{1}}{{x}}} \left(\left(\mathrm{1}+\frac{{b}}{{x}}\right)^{\frac{\mathrm{1}}{{x}}} −\mathrm{1}\right)} \\ $$$${we}\:{have}\:\left(\mathrm{1}+\frac{{a}}{{x}}\right)^{\frac{\mathrm{1}}{{x}}} −\mathrm{1}={e}^{\frac{\mathrm{1}}{{x}}{ln}\left(\mathrm{1}+\frac{{a}}{{x}}\right)} \\ $$$$\sim{e}^{\frac{\mathrm{1}}{{x}}\left(\frac{{a}}{{x}}\right)} −\mathrm{1}={e}^{\frac{{a}}{{x}^{\mathrm{2}} }} −\mathrm{1}\:\sim\frac{{a}}{{x}^{\mathrm{2}} }\: \\ $$$$\left(\mathrm{1}+\frac{{b}}{{x}}\right)^{\frac{\mathrm{1}}{{x}}} −\mathrm{1}\sim\frac{{b}}{{x}^{\mathrm{2}} }\:\Rightarrow \\ $$$${lim}_{{x}\rightarrow+\infty} {l}\left({x}\right)=\frac{{a}}{{b}}\:\:\:\:\:\:\:\left({b}\neq\mathrm{0}\right) \\ $$$$ \\ $$

Commented by Ghisom last updated on 13/May/24

thank you

$$\mathrm{thank}\:\mathrm{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com