Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 175362 by cortano1 last updated on 28/Aug/22

  lim_(x→(π/4))  ((sin x−cos x)/(tan ((π/8)−(x/2)))) =?

$$\:\:\underset{{x}\rightarrow\frac{\pi}{\mathrm{4}}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:{x}−\mathrm{cos}\:{x}}{\mathrm{tan}\:\left(\frac{\pi}{\mathrm{8}}−\frac{{x}}{\mathrm{2}}\right)}\:=? \\ $$

Commented by infinityaction last updated on 28/Aug/22

  lim_(x→(π/4))  ((−(√2)sin(π/4−x))/(sin((π/8)−(x/2))sec ((π/8)−(x/2))  ))    lim_(x→(π/4))  ((−2(√2)sin((π/8)−(x/2))cos((π/8)−(x/2))  )/(sin((π/8)−(x/2))))      −2(√2)

$$\:\:\underset{{x}\rightarrow\frac{\pi}{\mathrm{4}}} {\mathrm{lim}}\:\frac{−\sqrt{\mathrm{2}}\mathrm{sin}\left(\pi/\mathrm{4}−{x}\right)}{\mathrm{sin}\left(\frac{\pi}{\mathrm{8}}−\frac{{x}}{\mathrm{2}}\right)\mathrm{sec}\:\left(\frac{\pi}{\mathrm{8}}−\frac{{x}}{\mathrm{2}}\right)\:\:} \\ $$$$\:\:\underset{{x}\rightarrow\frac{\pi}{\mathrm{4}}} {\mathrm{lim}}\:\frac{−\mathrm{2}\sqrt{\mathrm{2}}\cancel{\mathrm{sin}\left(\frac{\pi}{\mathrm{8}}−\frac{{x}}{\mathrm{2}}\right)}\mathrm{cos}\left(\frac{\pi}{\mathrm{8}}−\frac{{x}}{\mathrm{2}}\right)\:\:}{\cancel{\mathrm{sin}\left(\frac{\pi}{\mathrm{8}}−\frac{{x}}{\mathrm{2}}\right)}} \\ $$$$\:\:\:\:−\mathrm{2}\sqrt{\mathrm{2}} \\ $$

Commented by CElcedricjunior last updated on 28/Aug/22

lim_(x→(𝛑/4)) ((sinx−cosx)/(tan((𝛑/8)−(x/2))))=(0/0)=FI  end apply hospital   lim_(x→(𝛑/4)) ((cosx+sinx)/(−(1/2)[1+tan^2 ((𝛑/8)−(x/2))]))=((√2)/(−(1/2)))  lim_(x→(𝛑/4)) ((sinx−cosx)/(tan((𝛑/8)−(x/2))))=−2(√2)     .........le ce^� le^� bre cedric junior.........

$$\underset{{x}\rightarrow\frac{\boldsymbol{\pi}}{\mathrm{4}}} {\mathrm{lim}}\frac{\boldsymbol{{sinx}}−\boldsymbol{{cosx}}}{\boldsymbol{{tan}}\left(\frac{\boldsymbol{\pi}}{\mathrm{8}}−\frac{\boldsymbol{{x}}}{\mathrm{2}}\right)}=\frac{\mathrm{0}}{\mathrm{0}}={F}\boldsymbol{{I}} \\ $$$$\boldsymbol{{end}}\:\boldsymbol{{apply}}\:\boldsymbol{{hospital}}\: \\ $$$$\underset{{x}\rightarrow\frac{\boldsymbol{\pi}}{\mathrm{4}}} {\mathrm{lim}}\frac{\boldsymbol{{cosx}}+\boldsymbol{{sinx}}}{−\frac{\mathrm{1}}{\mathrm{2}}\left[\mathrm{1}+\boldsymbol{{ta}}\overset{\mathrm{2}} {\boldsymbol{{n}}}\left(\frac{\boldsymbol{\pi}}{\mathrm{8}}−\frac{\boldsymbol{{x}}}{\mathrm{2}}\right)\right]}=\frac{\sqrt{\mathrm{2}}}{−\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$$\underset{{x}\rightarrow\frac{\boldsymbol{\pi}}{\mathrm{4}}} {\mathrm{lim}}\frac{\boldsymbol{{sinx}}−\boldsymbol{{cosx}}}{\boldsymbol{{tan}}\left(\frac{\boldsymbol{\pi}}{\mathrm{8}}−\frac{\boldsymbol{{x}}}{\mathrm{2}}\right)}=−\mathrm{2}\sqrt{\mathrm{2}} \\ $$$$\: \\ $$$$.........\boldsymbol{{le}}\:{c}\acute {{e}l}\grave {{e}bre}\:{cedric}\:{junior}......... \\ $$

Answered by BaliramKumar last updated on 28/Aug/22

lim_(x→(π/4))  (((d/dx)(sinx−cosx))/((d/dx)tan((π/8)−(x/2)))) = lim_(x→(π/4)) ((cosx+sinx)/(     −(1/2)sec^2 ((π/8)−(x/2))))  (((1/( (√2)))+(1/( (√2))))/(((−1)/2)×1)) = −2(√2)

$$\underset{{x}\rightarrow\frac{\pi}{\mathrm{4}}} {\mathrm{lim}}\:\frac{\frac{{d}}{{dx}}\left({sinx}−{cosx}\right)}{\frac{{d}}{{dx}}{tan}\left(\frac{\pi}{\mathrm{8}}−\frac{{x}}{\mathrm{2}}\right)}\:=\:\underset{{x}\rightarrow\frac{\pi}{\mathrm{4}}} {\mathrm{lim}}\frac{{cosx}+{sinx}}{\:\:\:\:\:−\frac{\mathrm{1}}{\mathrm{2}}{sec}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{8}}−\frac{{x}}{\mathrm{2}}\right)} \\ $$$$\frac{\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}}{\frac{−\mathrm{1}}{\mathrm{2}}×\mathrm{1}}\:=\:−\mathrm{2}\sqrt{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com