Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 193262 by josemate19 last updated on 09/Jun/23

lim_(x→+∞) (ln((x+(√(x^2 +1)))/(x+(√(x^2 −1)))).ln^2  ((x+1)/(x−1)))

$$\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\left({ln}\frac{{x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}}{{x}+\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}.{ln}^{\mathrm{2}} \:\frac{{x}+\mathrm{1}}{{x}−\mathrm{1}}\right) \\ $$$$ \\ $$

Answered by qaz last updated on 09/Jun/23

lim_(x→+∞) ((x+(√(x^2 +1)))/(x+(√(x^2 −1))))=lim_(x→+∞) ((x+1)/(x−1))=1  ⇒lim_(x→+∞) ln((x+(√(x^2 +1)))/(x+(√(x^2 −1))))ln^2 ((x+1)/(x−1))=0

$$\underset{{x}\rightarrow+\infty} {{lim}}\frac{{x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}}{{x}+\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}=\underset{{x}\rightarrow+\infty} {{lim}}\frac{{x}+\mathrm{1}}{{x}−\mathrm{1}}=\mathrm{1} \\ $$$$\Rightarrow\underset{{x}\rightarrow+\infty} {{lim}ln}\frac{{x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}}{{x}+\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}{ln}^{\mathrm{2}} \frac{{x}+\mathrm{1}}{{x}−\mathrm{1}}=\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com