Question Number 174715 by infinityaction last updated on 09/Aug/22 | ||
![]() | ||
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}cos}\left(\frac{\pi}{\mathrm{4}}\right)\mathrm{cos}\left(\frac{\pi}{\mathrm{8}}\right)\:...\:\mathrm{cos}\left(\frac{\pi}{\mathrm{2}^{{n}+\mathrm{1}} }\right)\: \\ $$ | ||
Answered by abdullahoudou last updated on 09/Aug/22 | ||
![]() | ||
$$\mathrm{cos}\:\left(\frac{\pi}{\mathrm{2}^{{n}} }\right)=\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}^{{n}−\mathrm{1}} }\right)\frac{\mathrm{1}}{\mathrm{2sin}\:\left(\pi/\mathrm{2}^{{n}} \right)} \\ $$$${telescope} \\ $$ | ||
Commented by infinityaction last updated on 09/Aug/22 | ||
![]() | ||
$${can}\:{you}\:{tell}\:{me}\:{full}\:{solution} \\ $$$${of}\:{this}\:{question}\: \\ $$ | ||
Answered by princeDera last updated on 10/Aug/22 | ||
![]() | ||
$$ \\ $$$$ \\ $$$$\mathrm{sin}\:\left(\mathrm{2}{x}\right)\:=\:\mathrm{2cos}\:\left({x}\right)\mathrm{sin}\:\left({x}\right) \\ $$$$\mathrm{cos}\:\left({x}\right)\:=\:\frac{{sin}\left(\mathrm{2}{x}\right)}{\mathrm{sin}\:\left({x}\right)} \\ $$$$\mathrm{cos}\:\left(\frac{\pi}{\mathrm{2}^{{n}} }\right)\:=\:\frac{\mathrm{sin}\:\left(\frac{\mathrm{2}\pi}{\mathrm{2}^{{n}} }\right)}{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}^{{n}} }\right)}\:=\:\frac{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}^{{n}−\mathrm{1}} }\right)}{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}^{{n}} }\right)} \\ $$$$\Omega\:=\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\underset{{k}=\mathrm{2}} {\overset{{n}+\mathrm{1}} {\prod}}\frac{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}^{{n}−\mathrm{1}} }\right)}{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}^{{n}} }\right)}\:=\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left\{\:\frac{\mathrm{sin}\:\left(\pi/\mathrm{2}\right)}{\mathrm{sin}\:\frac{\pi}{\mathrm{4}}}×\frac{\mathrm{sin}\left(\frac{\pi}{\mathrm{4}}\right)\:}{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{8}}\right)}× ×\frac{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}^{{n}−\mathrm{1}} }\right)}{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}^{{n}} }\right)}×\frac{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}^{{n}} }\right)}{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}^{{n}+\mathrm{1}} }\right)}\right\} \\ $$$$\Omega\:=\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left\{\frac{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}}\right)}{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}^{{n}+\mathrm{1}} }\right)}\right\} \\ $$$$ \\ $$$${As}\:{n}\rightarrow\infty,\mathrm{sin}\:\left\{\frac{\pi}{\mathrm{2}^{{n}+\mathrm{1}} }\right\}\:\rightarrow\:\mathrm{0} \\ $$$${the}\:{limit}\:{doesn}'{t}\:{exist} \\ $$$$ \\ $$ | ||
Commented by infinityaction last updated on 09/Aug/22 | ||
![]() | ||
$${dont}\:{use}\:{l}\:{hopital}\:{rule} \\ $$$${because}\:{not}\:\frac{\mathrm{0}}{\mathrm{0}}\:{or}\:\frac{\infty}{\infty}\:{form}\: \\ $$ | ||
Commented by princeDera last updated on 10/Aug/22 | ||
![]() | ||
$${yeah} \\ $$$${the}\:{limit}\:{doesn}'{t}\:{exist} \\ $$$$ \\ $$ | ||