Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 200741 by Rydel last updated on 22/Nov/23

lim_(x→a) ((asin x−xsin a)/(x−a))

$$\underset{{x}\rightarrow{a}} {\mathrm{lim}}\frac{{a}\mathrm{sin}\:{x}−{x}\mathrm{sin}\:{a}}{{x}−{a}} \\ $$

Commented by JDamian last updated on 22/Nov/23

really?

Answered by JDamian last updated on 22/Nov/23

hint: xsin a−asin a=(x−a)sin a

$$\mathrm{hint}:\:{x}\mathrm{sin}\:{a}−{a}\mathrm{sin}\:{a}=\left({x}−{a}\right)\mathrm{sin}\:{a} \\ $$

Commented by Rydel last updated on 22/Nov/23

lim_(x→a) ((asin x−xsina )/(x−a))

$$\underset{{x}\rightarrow{a}} {\mathrm{lim}}\frac{{a}\mathrm{sin}\:{x}−{x}\mathrm{sin}{a}\:}{{x}−{a}} \\ $$

Answered by MM42 last updated on 22/Nov/23

hop→lim_(x→a)  ((acosx−sina)/1)  =acosa−sina ✓

$${hop}\rightarrow{lim}_{{x}\rightarrow{a}} \:\frac{{acosx}−{sina}}{\mathrm{1}} \\ $$$$={acosa}−{sina}\:\checkmark \\ $$

Answered by tri26112004 last updated on 23/Nov/23

= lim_(x→a)  ((a(sin x − sin a)+asin a−xsin a)/(x−a))  = lim_(x→a)  ((2acos(((x+a)/2))sin(((x−a)/2)))/(x−a))+lim_(x→a)  (((a−x)sin a)/(x−a))  = lim_(x→a)  acos(((x+a)/2)) − lim_(x→a)  sin a  = acos a − sin a

$$=\:\underset{{x}\rightarrow{a}} {\mathrm{lim}}\:\frac{{a}\left({sin}\:{x}\:−\:{sin}\:{a}\right)+{asin}\:{a}−{xsin}\:{a}}{{x}−{a}} \\ $$$$=\:\underset{{x}\rightarrow{a}} {\mathrm{lim}}\:\frac{\mathrm{2}{acos}\left(\frac{{x}+{a}}{\mathrm{2}}\right){sin}\left(\frac{{x}−{a}}{\mathrm{2}}\right)}{{x}−{a}}+\underset{{x}\rightarrow{a}} {\mathrm{lim}}\:\frac{\left({a}−{x}\right){sin}\:{a}}{{x}−{a}} \\ $$$$=\:\underset{{x}\rightarrow{a}} {\mathrm{lim}}\:{acos}\left(\frac{{x}+{a}}{\mathrm{2}}\right)\:−\:\underset{{x}\rightarrow{a}} {\mathrm{lim}}\:{sin}\:{a} \\ $$$$=\:{acos}\:{a}\:−\:{sin}\:{a} \\ $$

Commented by Rydel last updated on 23/Nov/23

thank you very much

$${thank}\:{you}\:{very}\:{much} \\ $$

Answered by MM42 last updated on 23/Nov/23

x−a=u  ⇒lim_(u→0)  ((asin(u+a)−(u+a)sina)/u)  =lim_(u→0)  ((asinucosa+asinacosu−usina−asina)/u)  =lim_(u→0) ( ((sinu)/u)acosa−sina−((1−cosu)/u)asina)  =acosa−sina

$${x}−{a}={u} \\ $$$$\Rightarrow{lim}_{{u}\rightarrow\mathrm{0}} \:\frac{{asin}\left({u}+{a}\right)−\left({u}+{a}\right){sina}}{{u}} \\ $$$$={lim}_{{u}\rightarrow\mathrm{0}} \:\frac{{asinucosa}+{asinacosu}−{usina}−{asina}}{{u}} \\ $$$$={lim}_{{u}\rightarrow\mathrm{0}} \left(\:\frac{{sinu}}{{u}}{acosa}−{sina}−\frac{\mathrm{1}−{cosu}}{{u}}{asina}\right) \\ $$$$={acosa}−{sina} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com