Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 168821 by mathlove last updated on 18/Apr/22

lim_(x→a) ((a^x −a^n )/(nln(x)−nln(a)))=?

$$\underset{{x}\rightarrow{a}} {\mathrm{lim}}\frac{{a}^{{x}} −{a}^{{n}} }{{nln}\left({x}\right)−{nln}\left({a}\right)}=? \\ $$

Answered by alephzero last updated on 18/Apr/22

lim_(x→a) ((a^x −a^n )/(nln x−n ln a)) =  = lim_(x→a) ((a^x ln a)/(n/x)) = ((a^(a+1) ln a)/n)

$$\underset{{x}\rightarrow{a}} {\mathrm{lim}}\frac{{a}^{{x}} −{a}^{{n}} }{{n}\mathrm{ln}\:{x}−{n}\:\mathrm{ln}\:{a}}\:= \\ $$$$=\:\underset{{x}\rightarrow{a}} {\mathrm{lim}}\frac{{a}^{{x}} \mathrm{ln}\:{a}}{\frac{{n}}{{x}}}\:=\:\frac{{a}^{{a}+\mathrm{1}} \mathrm{ln}\:{a}}{{n}} \\ $$

Commented by aleks041103 last updated on 18/Apr/22

You′re using l′hopital′s rule, but to do so  the limit must be of the form [(0/0)] or [(∞/∞)].  For this limit the denominator does go to 0,  but the numerator goes to 0 only if n=a.  If a=n, then your answer is correct,  otherwise the limit goes to ±∞ depending  on which is bigger a^a  or a^n .

$${You}'{re}\:{using}\:{l}'{hopital}'{s}\:{rule},\:{but}\:{to}\:{do}\:{so} \\ $$$${the}\:{limit}\:{must}\:{be}\:{of}\:{the}\:{form}\:\left[\frac{\mathrm{0}}{\mathrm{0}}\right]\:{or}\:\left[\frac{\infty}{\infty}\right]. \\ $$$${For}\:{this}\:{limit}\:{the}\:{denominator}\:{does}\:{go}\:{to}\:\mathrm{0}, \\ $$$${but}\:{the}\:{numerator}\:{goes}\:{to}\:\mathrm{0}\:{only}\:{if}\:{n}={a}. \\ $$$${If}\:{a}={n},\:{then}\:{your}\:{answer}\:{is}\:{correct}, \\ $$$${otherwise}\:{the}\:{limit}\:{goes}\:{to}\:\pm\infty\:{depending} \\ $$$${on}\:{which}\:{is}\:{bigger}\:{a}^{{a}} \:{or}\:{a}^{{n}} . \\ $$

Commented by alephzero last updated on 19/Apr/22

Thank you sir! I′ll know

$${Thank}\:{you}\:{sir}!\:{I}'{ll}\:{know} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com