Question Number 114088 by bemath last updated on 17/Sep/20 | ||
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{2}{x}\:\mathrm{cot}\:\left(\frac{\mathrm{2}}{{x}}\right)−\mathrm{3cot}\:\left(\frac{\mathrm{2}}{{x}}\right)}{\mathrm{5}{x}^{\mathrm{2}} −\mathrm{2}{x}} \\ $$ | ||
Answered by Olaf last updated on 17/Sep/20 | ||
$$=\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{2}}{{x}}\right)^{\mathrm{2}} }{\left(\frac{\mathrm{2}}{{x}}\right)}\left[\frac{\mathrm{2}{x}−\mathrm{3}}{\mathrm{5}{x}^{\mathrm{2}} −\mathrm{2}{x}}\right] \\ $$$$=\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{{x}^{\mathrm{2}} −\mathrm{2}}{\mathrm{2}{x}}×\frac{\mathrm{2}{x}−\mathrm{3}}{\mathrm{5}{x}^{\mathrm{2}} −\mathrm{2}{x}} \\ $$$$=\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{2}{x}^{\mathrm{3}} }{\mathrm{10}{x}^{\mathrm{3}} }\:=\:\frac{\mathrm{1}}{\mathrm{5}} \\ $$ | ||