Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 118327 by bramlexs22 last updated on 17/Oct/20

  lim_(x→1)  ((x−(√(2−x^2 )))/(2x−(√(2+2x^2 )))) ?

$$\:\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{{x}−\sqrt{\mathrm{2}−{x}^{\mathrm{2}} }}{\mathrm{2}{x}−\sqrt{\mathrm{2}+\mathrm{2}{x}^{\mathrm{2}} }}\:? \\ $$

Answered by TANMAY PANACEA last updated on 17/Oct/20

lim_(x→1)  ((x^2 −(2−x^2 ))/(4x^2 −(2+2x^2 )))×((2x+(√(2+2x^2 )))/(x+(√(2−x^2 ))))  lim_(x→1)  ((2x^2 −2)/(2x^2 −2))×((2x+(√(2+2x^2 )))/(x+(√(2−x^2 ))))  =((2+(√4))/(1+(√1)))=(4/2)=2

$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{{x}^{\mathrm{2}} −\left(\mathrm{2}−{x}^{\mathrm{2}} \right)}{\mathrm{4}{x}^{\mathrm{2}} −\left(\mathrm{2}+\mathrm{2}{x}^{\mathrm{2}} \right)}×\frac{\mathrm{2}{x}+\sqrt{\mathrm{2}+\mathrm{2}{x}^{\mathrm{2}} }}{{x}+\sqrt{\mathrm{2}−{x}^{\mathrm{2}} }} \\ $$$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{2}}{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{2}}×\frac{\mathrm{2}{x}+\sqrt{\mathrm{2}+\mathrm{2}{x}^{\mathrm{2}} }}{{x}+\sqrt{\mathrm{2}−{x}^{\mathrm{2}} }} \\ $$$$=\frac{\mathrm{2}+\sqrt{\mathrm{4}}}{\mathrm{1}+\sqrt{\mathrm{1}}}=\frac{\mathrm{4}}{\mathrm{2}}=\mathrm{2} \\ $$

Answered by bramlexs22 last updated on 17/Oct/20

Answered by benjo_mathlover last updated on 17/Oct/20

via L′hopital rule    lim_(x→1)  ((1+(x/( (√(2−x^2 )))))/(2−(((2x)/( (√(2+2x^2 ))))))) = ((1+1)/(2−(2/( (√4))))) = 2

$${via}\:{L}'{hopital}\:{rule}\: \\ $$$$\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\mathrm{1}+\frac{{x}}{\:\sqrt{\mathrm{2}−{x}^{\mathrm{2}} }}}{\mathrm{2}−\left(\frac{\mathrm{2}{x}}{\:\sqrt{\mathrm{2}+\mathrm{2}{x}^{\mathrm{2}} }}\right)}\:=\:\frac{\mathrm{1}+\mathrm{1}}{\mathrm{2}−\frac{\mathrm{2}}{\:\sqrt{\mathrm{4}}}}\:=\:\mathrm{2} \\ $$

Answered by 1549442205PVT last updated on 17/Oct/20

 I= lim_(x→1)  ((x−(√(2−x^2 )))/(2x−(√(2+2x^2 )))) =This is form(0/0)   Using L′Hopital⇒ I=Lim_(x→1)   ((1+(x/( (√(2−x^2 )))))/(2−((2x)/( (√(2+2x^2 ))))))  =((1+1)/(2−1))=2

$$\:\mathrm{I}=\underset{\mathrm{x}\rightarrow\mathrm{1}} {\:\mathrm{lim}}\:\frac{{x}−\sqrt{\mathrm{2}−{x}^{\mathrm{2}} }}{\mathrm{2}{x}−\sqrt{\mathrm{2}+\mathrm{2}{x}^{\mathrm{2}} }}\:=\mathrm{This}\:\mathrm{is}\:\mathrm{form}\frac{\mathrm{0}}{\mathrm{0}}\: \\ $$$$\mathrm{Using}\:\mathrm{L}'\mathrm{Hopital}\Rightarrow\:\mathrm{I}=\underset{\mathrm{x}\rightarrow\mathrm{1}} {\mathrm{Lim}}\:\:\frac{\mathrm{1}+\frac{\mathrm{x}}{\:\sqrt{\mathrm{2}−\mathrm{x}^{\mathrm{2}} }}}{\mathrm{2}−\frac{\mathrm{2x}}{\:\sqrt{\mathrm{2}+\mathrm{2x}^{\mathrm{2}} }}} \\ $$$$=\frac{\mathrm{1}+\mathrm{1}}{\mathrm{2}−\mathrm{1}}=\mathrm{2} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com