Question Number 91133 by john santu last updated on 28/Apr/20 | ||
$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\left({x}−\mathrm{1}\right)+\sqrt[{\mathrm{3}\:\:}]{\mathrm{1}−{x}}}{\sqrt[{\mathrm{3}\:\:}]{\mathrm{1}−{x}^{\mathrm{2}} }}\:=\: \\ $$ | ||
Commented by john santu last updated on 28/Apr/20 | ||
$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\left({x}−\mathrm{1}\right)+\left(\mathrm{1}−\frac{{x}}{\mathrm{3}}\right)}{\sqrt[{\mathrm{3}\:\:}]{\mathrm{2}}\:\left(\mathrm{1}−\frac{{x}}{\mathrm{3}}\right)}\:=\: \\ $$$$\frac{\mathrm{1}}{\sqrt[{\mathrm{3}\:\:}]{\mathrm{2}}}\:×\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\left(\frac{\frac{\mathrm{2}}{\mathrm{3}}{x}}{\frac{\mathrm{2}}{\mathrm{3}}{x}}\right)\:=\:\frac{\mathrm{1}}{\sqrt[{\mathrm{3}\:\:}]{\mathrm{2}}}\:.\: \\ $$ | ||
Commented by mathmax by abdo last updated on 28/Apr/20 | ||
$${let}\:{f}\left({x}\right)\:=\frac{\left({x}−\mathrm{1}\right)+^{\mathrm{3}} \sqrt{\mathrm{1}−{x}}}{\left(^{\mathrm{3}} \sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\right)}\:\:{changement}\:^{\mathrm{3}} \sqrt{\mathrm{1}−{x}}={t}\:{give} \\ $$$$\mathrm{1}−{x}={t}^{\mathrm{3}} \:\Rightarrow{f}\left({x}\right)\:={g}\left({t}\right)\:=\frac{−{t}^{\mathrm{3}} +{t}}{{t}\:\left(^{\mathrm{3}} \sqrt{\left.\mathrm{1}+\mathrm{1}−{t}^{\mathrm{3}} \right)}\right.}\:=\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\left(\mathrm{2}−{t}^{\mathrm{3}} \right)^{\frac{\mathrm{1}}{\mathrm{3}}} } \\ $$$$=\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\left(^{\mathrm{3}} \sqrt{\mathrm{2}}\right)\left(\mathrm{1}−\frac{{t}^{\mathrm{3}} }{\mathrm{2}}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} }\:\:\:\left({x}\rightarrow\mathrm{1}\:\Rightarrow{t}\rightarrow\mathrm{0}\right)\:\Rightarrow{g}\left({t}\right)\sim\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\left(^{\mathrm{3}} \sqrt{\mathrm{2}}\right)\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{6}}{t}^{\mathrm{3}} \right)}\:\Rightarrow \\ $$$${lim}_{{t}\rightarrow\mathrm{0}} \:\:\:{g}\left({t}\right)\:=\frac{\mathrm{1}}{\left(^{\mathrm{3}} \sqrt{\mathrm{2}}\right)}\:={lim}_{{x}\rightarrow\mathrm{1}} \:\:{f}\left({x}\right) \\ $$ | ||
Answered by john santu last updated on 28/Apr/20 | ||
$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\sqrt[{\mathrm{3}\:\:}]{{x}−\mathrm{1}}\:\left(\sqrt[{\mathrm{3}\:\:}]{\left({x}−\mathrm{1}\right)^{\mathrm{2}} }−\mathrm{1}\right)}{\sqrt[{\mathrm{3}\:\:}]{\mathrm{1}−{x}}\:\:\sqrt[{\mathrm{3}\:\:}]{\mathrm{1}+{x}}}\:=\: \\ $$$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\mathrm{1}−\sqrt[{\mathrm{3}\:\:}]{\left({x}−\mathrm{1}\right)^{\mathrm{2}} }}{\sqrt[{\mathrm{3}\:\:}]{\mathrm{1}+{x}}}\:=\:\frac{\mathrm{1}}{\sqrt[{\mathrm{3}\:\:}]{\mathrm{2}}}\: \\ $$ | ||