Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 86655 by jagoll last updated on 30/Mar/20

lim_(x→−1^+ )  (((√π) −(√(arc cos x)))/(√(x+1)))

$$\underset{{x}\rightarrow−\mathrm{1}^{+} } {\mathrm{lim}}\:\frac{\sqrt{\pi}\:−\sqrt{\mathrm{arc}\:\mathrm{cos}\:\mathrm{x}}}{\sqrt{\mathrm{x}+\mathrm{1}}} \\ $$

Answered by john santu last updated on 30/Mar/20

L′hopital rule  lim_(x→−1^+ )  ((−(1/2)(arc cos x)^(−(1/2)) (((−1)/(√(1−x^2 )))))/(1/(2(√(x+1)))))   lim_(x→−1^+ )  (1/(√(arc cos x))) ×((√(1+x))/(√(1−x^2 )))  lim_(x→−1^+ )  (1/(√(arc cos x)))×(1/(√(1−x)))  (1/(√π)) × (1/(√2))  = (1/(√(2π)))

$$\mathrm{L}'\mathrm{hopital}\:\mathrm{rule} \\ $$$$\underset{{x}\rightarrow−\mathrm{1}^{+} } {\mathrm{lim}}\:\frac{−\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{arc}\:\mathrm{cos}\:\mathrm{x}\right)^{−\frac{\mathrm{1}}{\mathrm{2}}} \left(\frac{−\mathrm{1}}{\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }}\right)}{\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{x}+\mathrm{1}}}}\: \\ $$$$\underset{{x}\rightarrow−\mathrm{1}^{+} } {\mathrm{lim}}\:\frac{\mathrm{1}}{\sqrt{\mathrm{arc}\:\mathrm{cos}\:\mathrm{x}}}\:×\frac{\sqrt{\mathrm{1}+\mathrm{x}}}{\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }} \\ $$$$\underset{{x}\rightarrow−\mathrm{1}^{+} } {\mathrm{lim}}\:\frac{\mathrm{1}}{\sqrt{\mathrm{arc}\:\mathrm{cos}\:\mathrm{x}}}×\frac{\mathrm{1}}{\sqrt{\mathrm{1}−\mathrm{x}}} \\ $$$$\frac{\mathrm{1}}{\sqrt{\pi}}\:×\:\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\:\:=\:\frac{\mathrm{1}}{\sqrt{\mathrm{2}\pi}} \\ $$

Commented by jagoll last updated on 30/Mar/20

thank you

$$\mathrm{thank}\:\mathrm{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com