Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 205451 by MrGHK last updated on 21/Mar/24

lim_(x→∞) ∫_0 ^x (dt/(e^(2t) t))

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\int_{\mathrm{0}} ^{{x}} \frac{{dt}}{{e}^{\mathrm{2}{t}} {t}} \\ $$

Answered by Berbere last updated on 21/Mar/24

x→^f e^(−2x) ;over [0,t] t≤(1/2);∃c∈]0,t[ Such  ⇒f(t)−f(0)=tf′(c)  ⇒e^(−2t) −1=−2te^(−2c) ;e^(−2c) ≤0⇒e^(−2t) −1≥−2t  ⇒e^(−2t) ≥1−2t   ∫_0 ^x (dt/(e^(2t) .t))=f(x);f′(x)>0 f increse ⇒(lim_(x→∞) f(x)≥f(a);∀a∈R_+ )  lim_(x→∞) f(x)≥f((1/2))=∫_0 ^(1/2) (e^(−2t) /t)dt≥∫_0 ^(1/2) (1/t)(1−2t)dt  =[ln(t)−2]_0 ^(1/2) =+∞  lim_(x→∞) f(x)=+∞  or just saying;(1/(e^(−2x) x))∼^0 (1/x) diverge

$$\left.{x}\overset{{f}} {\rightarrow}{e}^{−\mathrm{2}{x}} ;{over}\:\left[\mathrm{0},{t}\right]\:{t}\leqslant\frac{\mathrm{1}}{\mathrm{2}};\exists{c}\in\right]\mathrm{0},{t}\left[\:{Such}\right. \\ $$$$\Rightarrow{f}\left({t}\right)−{f}\left(\mathrm{0}\right)={tf}'\left({c}\right) \\ $$$$\Rightarrow{e}^{−\mathrm{2}{t}} −\mathrm{1}=−\mathrm{2}{te}^{−\mathrm{2}{c}} ;{e}^{−\mathrm{2}{c}} \leqslant\mathrm{0}\Rightarrow{e}^{−\mathrm{2}{t}} −\mathrm{1}\geqslant−\mathrm{2}{t} \\ $$$$\Rightarrow{e}^{−\mathrm{2}{t}} \geqslant\mathrm{1}−\mathrm{2}{t}\: \\ $$$$\int_{\mathrm{0}} ^{{x}} \frac{{dt}}{{e}^{\mathrm{2}{t}} .{t}}={f}\left({x}\right);{f}'\left({x}\right)>\mathrm{0}\:{f}\:{increse}\:\Rightarrow\left(\underset{{x}\rightarrow\infty} {\mathrm{lim}}{f}\left({x}\right)\geqslant{f}\left({a}\right);\forall{a}\in\mathbb{R}_{+} \right) \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}{f}\left({x}\right)\geqslant{f}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)=\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \frac{{e}^{−\mathrm{2}{t}} }{{t}}{dt}\geqslant\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \frac{\mathrm{1}}{{t}}\left(\mathrm{1}−\mathrm{2}{t}\right){dt} \\ $$$$=\left[{ln}\left({t}\right)−\mathrm{2}\right]_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} =+\infty \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}{f}\left({x}\right)=+\infty \\ $$$${or}\:{just}\:{saying};\frac{\mathrm{1}}{{e}^{−\mathrm{2}{x}} {x}}\overset{\mathrm{0}} {\sim}\frac{\mathrm{1}}{{x}}\:{diverge} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com