Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 184329 by greougoury555 last updated on 05/Jan/23

   lim_(x→0)  ((tan^(−1) (p+x)−tan^(−1) (p−x))/x)=?

$$\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{tan}^{−\mathrm{1}} \left({p}+{x}\right)−\mathrm{tan}^{−\mathrm{1}} \left({p}−{x}\right)}{{x}}=? \\ $$

Answered by SEKRET last updated on 05/Jan/23

  (2/(1+p^2 ))

$$\:\:\frac{\mathrm{2}}{\mathrm{1}+\boldsymbol{\mathrm{p}}^{\mathrm{2}} } \\ $$

Answered by mr W last updated on 05/Jan/23

y(x)=tan^(−1)  x  y′(x)=(1/(1+x^2 ))     lim_(x→0)  ((tan^(−1) (p+x)−tan^(−1) (p−x))/x)   =  lim_(h→0)  ((tan^(−1) (p+h))/h)+lim_(h→0)  ((tan^(−1) (p−h))/(−h))  =y′(x)∣_(x=p) +y′(x)∣_(x=p)   =(1/(1+p^2 ))+(1/(1+p^2 ))  =(2/(1+p^2 ))

$${y}\left({x}\right)=\mathrm{tan}^{−\mathrm{1}} \:{x} \\ $$$${y}'\left({x}\right)=\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$$\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{tan}^{−\mathrm{1}} \left({p}+{x}\right)−\mathrm{tan}^{−\mathrm{1}} \left({p}−{x}\right)}{{x}} \\ $$$$\:=\:\:\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{tan}^{−\mathrm{1}} \left({p}+{h}\right)}{{h}}+\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{tan}^{−\mathrm{1}} \left({p}−{h}\right)}{−{h}} \\ $$$$={y}'\left({x}\right)\mid_{{x}={p}} +{y}'\left({x}\right)\mid_{{x}={p}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{1}+{p}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{1}+{p}^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{2}}{\mathrm{1}+{p}^{\mathrm{2}} } \\ $$

Answered by cortano1 last updated on 05/Jan/23

 Find lim_(x→0)  ((tan^(−1) (p+x)−tan^(−1) (p−x))/x)  L = lim_(x→0)  ((tan^(−1) (p+x)−tan^(−1) p)/x) +lim_(x→0) ((tan^(−1) p−tan^(−1) (p−x))/x)  L_1 = lim_(x→0)  ((tan^(−1) (p+x)−tan^(−1) p)/x)  L_1 = lim_(x→0)  (x/(x{1+p(p+x)})) = (1/(p^2 +1))  L_2 = lim_(x→0) ((tan^(−1) p−tan^(−1) (p−x))/x)  L_2 = lim_(x→0)  (x/(x{1+p(p−x)})) = (1/(p^2 +1))   ∴ L=L_1 +L_2 = (2/(p^2 +1))

$$\:{Find}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{tan}^{−\mathrm{1}} \left({p}+{x}\right)−\mathrm{tan}^{−\mathrm{1}} \left({p}−{x}\right)}{{x}} \\ $$$${L}\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{tan}^{−\mathrm{1}} \left({p}+{x}\right)−\mathrm{tan}^{−\mathrm{1}} {p}}{{x}}\:+\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{tan}^{−\mathrm{1}} {p}−\mathrm{tan}^{−\mathrm{1}} \left({p}−{x}\right)}{{x}} \\ $$$${L}_{\mathrm{1}} =\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{tan}^{−\mathrm{1}} \left({p}+{x}\right)−\mathrm{tan}^{−\mathrm{1}} {p}}{{x}} \\ $$$${L}_{\mathrm{1}} =\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}}{{x}\left\{\mathrm{1}+{p}\left({p}+{x}\right)\right\}}\:=\:\frac{\mathrm{1}}{{p}^{\mathrm{2}} +\mathrm{1}} \\ $$$${L}_{\mathrm{2}} =\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{tan}^{−\mathrm{1}} {p}−\mathrm{tan}^{−\mathrm{1}} \left({p}−{x}\right)}{{x}} \\ $$$${L}_{\mathrm{2}} =\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}}{{x}\left\{\mathrm{1}+{p}\left({p}−{x}\right)\right\}}\:=\:\frac{\mathrm{1}}{{p}^{\mathrm{2}} +\mathrm{1}} \\ $$$$\:\therefore\:{L}={L}_{\mathrm{1}} +{L}_{\mathrm{2}} =\:\frac{\mathrm{2}}{{p}^{\mathrm{2}} +\mathrm{1}}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com