Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 10137 by malwaan last updated on 26/Jan/17

lim_(x→0^+ )  ((sin x^m )/(sin^n  x))  n;m ∈Z

$$\underset{{x}\rightarrow\mathrm{0}^{+} } {{lim}}\:\frac{{sin}\:{x}^{{m}} }{{sin}^{{n}} \:{x}}\:\:{n};{m}\:\in\mathbb{Z} \\ $$

Answered by mrW1 last updated on 26/Jan/17

lim_(x→0^+ )  ((sin x^m )/(sin^n  x))  =lim_(x→0^+ )  (((sin x^m )/x^m )/((((sin x)/x))^n ))×x^(m−n)   =lim_(x→0^+ )  x^(m−n)   = { ((0, when m>n)),((1, when m=n)),((+∞, when m<n)) :}

$$\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\frac{\mathrm{sin}\:{x}^{{m}} }{\mathrm{sin}^{{n}} \:{x}} \\ $$$$=\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\frac{\frac{\mathrm{sin}\:{x}^{{m}} }{{x}^{{m}} }}{\left(\frac{\mathrm{sin}\:{x}}{{x}}\right)^{{n}} }×{x}^{{m}−{n}} \\ $$$$=\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:{x}^{{m}−{n}} \\ $$$$=\begin{cases}{\mathrm{0},\:{when}\:{m}>{n}}\\{\mathrm{1},\:{when}\:{m}={n}}\\{+\infty,\:{when}\:{m}<{n}}\end{cases} \\ $$

Commented by malwaan last updated on 27/Jan/17

what if x→0^(− )  or  x→0

$${what}\:{if}\:{x}\rightarrow\mathrm{0}^{−\:} \:{or}\:\:{x}\rightarrow\mathrm{0} \\ $$

Commented by mrW1 last updated on 27/Jan/17

the result should be the same.

$${the}\:{result}\:{should}\:{be}\:{the}\:{same}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com