Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 62874 by solihin last updated on 26/Jun/19

lim_(x→0) ((sin(6x))/(tan(5x)))    how  to  solve  this  w/o  L′hospital′s  rule?

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{sin}\left(\mathrm{6}{x}\right)}{{tan}\left(\mathrm{5}{x}\right)} \\ $$$$ \\ $$$${how}\:\:{to}\:\:{solve}\:\:{this}\:\:{w}/{o}\:\:{L}'{hospital}'{s}\:\:{rule}? \\ $$

Commented by kaivan.ahmadi last updated on 26/Jun/19

lim_(x→0) ((sin6x)/(6x))×((5x)/(tan5x))×(6/5)=1×1×(6/5)=(6/5)

$${lim}_{{x}\rightarrow\mathrm{0}} \frac{{sin}\mathrm{6}{x}}{\mathrm{6}{x}}×\frac{\mathrm{5}{x}}{{tan}\mathrm{5}{x}}×\frac{\mathrm{6}}{\mathrm{5}}=\mathrm{1}×\mathrm{1}×\frac{\mathrm{6}}{\mathrm{5}}=\frac{\mathrm{6}}{\mathrm{5}} \\ $$

Commented by solihin last updated on 26/Jun/19

wow  thx

$${wow}\:\:{thx} \\ $$

Commented by mathmax by abdo last updated on 26/Jun/19

lim_(x→0)   ((sin(6x))/(tan(5x))) =lim_(x→0)     ((6cosx)/(5(1+tan^2 (5x)))) =(6/5)

$${lim}_{{x}\rightarrow\mathrm{0}} \:\:\frac{{sin}\left(\mathrm{6}{x}\right)}{{tan}\left(\mathrm{5}{x}\right)}\:={lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\:\frac{\mathrm{6}{cosx}}{\mathrm{5}\left(\mathrm{1}+{tan}^{\mathrm{2}} \left(\mathrm{5}{x}\right)\right)}\:=\frac{\mathrm{6}}{\mathrm{5}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com