Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 84460 by jagoll last updated on 13/Mar/20

lim_(x→0)  ((sin (2+x)−sin (2−x))/x)

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:\left(\mathrm{2}+\mathrm{x}\right)−\mathrm{sin}\:\left(\mathrm{2}−\mathrm{x}\right)}{\mathrm{x}} \\ $$

Commented by jagoll last updated on 13/Mar/20

lim_(x→0)  ((cos (2+x)+cos (2−x))/1)  = 2cos 2

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:\left(\mathrm{2}+\mathrm{x}\right)+\mathrm{cos}\:\left(\mathrm{2}−\mathrm{x}\right)}{\mathrm{1}} \\ $$$$=\:\mathrm{2cos}\:\mathrm{2} \\ $$

Commented by mathmax by abdo last updated on 13/Mar/20

let f(x)=((sin(2+x)−sin(2−x))/x) ⇒  f(x) =((sin2 cosx +cos2sinx−(sin2 cosx −cos2 sinx))/x)  =((2cos2 sinx)/x) ∼ 2cos2    (x→0) ⇒lim_(x→0) f(x)=2cos2

$${let}\:{f}\left({x}\right)=\frac{{sin}\left(\mathrm{2}+{x}\right)−{sin}\left(\mathrm{2}−{x}\right)}{{x}}\:\Rightarrow \\ $$$${f}\left({x}\right)\:=\frac{{sin}\mathrm{2}\:{cosx}\:+{cos}\mathrm{2}{sinx}−\left({sin}\mathrm{2}\:{cosx}\:−{cos}\mathrm{2}\:{sinx}\right)}{{x}} \\ $$$$=\frac{\mathrm{2}{cos}\mathrm{2}\:{sinx}}{{x}}\:\sim\:\mathrm{2}{cos}\mathrm{2}\:\:\:\:\left({x}\rightarrow\mathrm{0}\right)\:\Rightarrow{lim}_{{x}\rightarrow\mathrm{0}} {f}\left({x}\right)=\mathrm{2}{cos}\mathrm{2} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com