Question Number 189501 by mathlove last updated on 18/Mar/23 | ||
![]() | ||
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{e}^{{x}+\mathrm{2}{x}+\mathrm{3}{x}+\mathrm{4}{x}+.....+{nx}} −\mathrm{1}}{{x}}=? \\ $$ | ||
Answered by mehdee42 last updated on 18/Mar/23 | ||
![]() | ||
$${hop}\rightarrow{lim}_{{x}\rightarrow\mathrm{0}} \left(\mathrm{1}+\mathrm{2}+...+{n}\right){e}^{{x}+\mathrm{2}{x}+...+{nx}} =\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}} \\ $$ | ||
Commented by mathlove last updated on 18/Mar/23 | ||
![]() | ||
$${with}\:{out}\:{Hopetal}\:{Rul} \\ $$ | ||
Answered by mr W last updated on 18/Mar/23 | ||
![]() | ||
$${e}^{{x}+\mathrm{2}{x}+\mathrm{3}{x}+...+{nx}} ={e}^{\frac{{n}\left({n}+\mathrm{1}\right){x}}{\mathrm{2}}} =\mathrm{1}+\frac{{n}\left({n}+\mathrm{1}\right){x}}{\mathrm{2}}+\frac{{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)^{\mathrm{2}} {x}^{\mathrm{2}} }{\mathrm{2}^{\mathrm{2}} \mathrm{2}!}+... \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{e}^{{x}+\mathrm{2}{x}+\mathrm{3}{x}+\mathrm{4}{x}+.....+{nx}} −\mathrm{1}}{{x}} \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left[\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}+\frac{{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)^{\mathrm{2}} {x}}{\mathrm{2}^{\mathrm{2}} \mathrm{2}!}+...\right] \\ $$$$=\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}} \\ $$ | ||
Commented by mathlove last updated on 18/Mar/23 | ||
![]() | ||
$${thanks}\:{dear} \\ $$ | ||
Answered by CElcedricjunior last updated on 18/Mar/23 | ||
![]() | ||
$$\boldsymbol{{l}}=\frac{\boldsymbol{{n}}\left(\boldsymbol{{n}}+\mathrm{1}\right)}{\mathrm{2}} \\ $$ | ||