Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 199843 by universe last updated on 10/Nov/23

    lim_(x→0)  ((1/(ln(1+x) ))−(1/(ln(x+(√(1+x^2 )) )))) = ??

$$\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{\mathrm{1}}{\mathrm{ln}\left(\mathrm{1}+{x}\right)\:}−\frac{\mathrm{1}}{\mathrm{ln}\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:\right)}\right)\:=\:?? \\ $$

Answered by witcher3 last updated on 10/Nov/23

=((ln(x+(√(1+x^2 )))−ln(1+x))/(ln((1+x)ln(x+(√(1+x^2 )))))=  ln(x+(√(1+x^2 )))=ln(1+x+o(x)∼x  ln(1+x)∼x  ∼((ln(x+(√(1+x^2 )))−ln(1+x))/x^2 )=((ln(x+1+(x^2 /2)+o(x^2 ))−ln(1+x))/x^2 )  =lim_(x→0) ((x+(x^2 /2)−(1/2)(x^2 )+o(x^2 )−(x−(x^2 /2)+o(x^2 )))/x^2 )  =lim_(x→0) ((x^2 +o(x^2 ))/(2x^2 ))=lim_(x→0) (1/2)+o(1)=(1/2)

$$=\frac{\mathrm{ln}\left(\mathrm{x}+\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\right)−\mathrm{ln}\left(\mathrm{1}+\mathrm{x}\right)}{\mathrm{ln}\left(\left(\mathrm{1}+\mathrm{x}\right)\mathrm{ln}\left(\mathrm{x}+\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\right)\right.}= \\ $$$$\mathrm{ln}\left(\mathrm{x}+\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\right)=\mathrm{ln}\left(\mathrm{1}+\mathrm{x}+\mathrm{o}\left(\mathrm{x}\right)\sim\mathrm{x}\right. \\ $$$$\mathrm{ln}\left(\mathrm{1}+\mathrm{x}\right)\sim\mathrm{x} \\ $$$$\sim\frac{\mathrm{ln}\left(\mathrm{x}+\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\right)−\mathrm{ln}\left(\mathrm{1}+\mathrm{x}\right)}{\mathrm{x}^{\mathrm{2}} }=\frac{\mathrm{ln}\left(\mathrm{x}+\mathrm{1}+\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}+\mathrm{o}\left(\mathrm{x}^{\mathrm{2}} \right)\right)−\mathrm{ln}\left(\mathrm{1}+\mathrm{x}\right)}{\mathrm{x}^{\mathrm{2}} } \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{x}+\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{x}^{\mathrm{2}} \right)+\mathrm{o}\left(\mathrm{x}^{\mathrm{2}} \right)−\left(\mathrm{x}−\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}+\mathrm{o}\left(\mathrm{x}^{\mathrm{2}} \right)\right)}{\mathrm{x}^{\mathrm{2}} } \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{x}^{\mathrm{2}} +\mathrm{o}\left(\mathrm{x}^{\mathrm{2}} \right)}{\mathrm{2x}^{\mathrm{2}} }=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{o}\left(\mathrm{1}\right)=\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com