Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 132367 by Raxreedoroid last updated on 13/Feb/21

lim_(n→∞) (x^n /(Γ(n+1)))

$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{{x}^{{n}} }{\Gamma\left({n}+\mathrm{1}\right)} \\ $$

Answered by TheSupreme last updated on 13/Feb/21

if n∈N → Γ(n+1)=n!  lim (x^n /(n!))=0 ∀x∈R_0 ^+   sup((x^n /(n!)))=∞ with x∈R_0 ^+   set A=[0,a]∈R_0 ^+   sup((x^n /(n!)))=(a^n /(n!))  lim_n sup(f_n (x))=0 ∀x∈A, ∀a∈R^+   convergenza puntuale in R_0 ^+   convergenza assoluta ∀x∈A, ∀a∈R^+

$${if}\:{n}\in\mathbb{N}\:\rightarrow\:\Gamma\left({n}+\mathrm{1}\right)={n}! \\ $$$$\mathrm{lim}\:\frac{\mathrm{x}^{\mathrm{n}} }{\mathrm{n}!}=\mathrm{0}\:\forall{x}\in\mathbb{R}_{\mathrm{0}} ^{+} \\ $$$$\mathrm{sup}\left(\frac{\mathrm{x}^{\mathrm{n}} }{\mathrm{n}!}\right)=\infty\:{with}\:{x}\in\mathbb{R}_{\mathrm{0}} ^{+} \\ $$$${set}\:{A}=\left[\mathrm{0},{a}\right]\in\mathbb{R}_{\mathrm{0}} ^{+} \\ $$$${sup}\left(\frac{{x}^{{n}} }{{n}!}\right)=\frac{{a}^{{n}} }{{n}!} \\ $$$${lim}_{{n}} {sup}\left({f}_{{n}} \left({x}\right)\right)=\mathrm{0}\:\forall{x}\in{A},\:\forall{a}\in\mathbb{R}^{+} \\ $$$${convergenza}\:{puntuale}\:{in}\:\mathbb{R}_{\mathrm{0}} ^{+} \\ $$$${convergenza}\:{assoluta}\:\forall{x}\in{A},\:\forall{a}\in\mathbb{R}^{+} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com