Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 204574 by universe last updated on 22/Feb/24

  lim_(n→∞)  n^(−3/2) [(n+1)^((n+1)) (n+2)^((n+2)) ...(2n)^(2n) ]^(1/n^2 )  = ?

$$ \\ $$$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{n}^{−\mathrm{3}/\mathrm{2}} \left[\left(\mathrm{n}+\mathrm{1}\right)^{\left(\mathrm{n}+\mathrm{1}\right)} \left(\mathrm{n}+\mathrm{2}\right)^{\left(\mathrm{n}+\mathrm{2}\right)} ...\left(\mathrm{2n}\right)^{\mathrm{2n}} \right]^{\mathrm{1}/\mathrm{n}^{\mathrm{2}} } \:=\:? \\ $$$$ \\ $$

Answered by TonyCWX08 last updated on 22/Feb/24

know  lim_(n→∞) ((1/n^a ))=0, a= Positive Number    n^(−(3/2)) =(1/n^(3/2) )  lim_(n→∞) ((1/n^(3/2) ))  =0    Anything Multiply 0 is 0  Final answer=0

$${know} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{1}}{{n}^{{a}} }\right)=\mathrm{0},\:{a}=\:{Positive}\:{Number} \\ $$$$ \\ $$$${n}^{−\frac{\mathrm{3}}{\mathrm{2}}} =\frac{\mathrm{1}}{{n}^{\frac{\mathrm{3}}{\mathrm{2}}} } \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{1}}{{n}^{\frac{\mathrm{3}}{\mathrm{2}}} }\right) \\ $$$$=\mathrm{0} \\ $$$$ \\ $$$${Anything}\:{Multiply}\:\mathrm{0}\:{is}\:\mathrm{0} \\ $$$${Final}\:{answer}=\mathrm{0} \\ $$

Commented by mr W last updated on 22/Feb/24

Anything Multiply 0 is 0 ?  (2n^2 +1)×(1/n^2 ) →2

$${Anything}\:{Multiply}\:\mathrm{0}\:{is}\:\mathrm{0}\:? \\ $$$$\left(\mathrm{2}{n}^{\mathrm{2}} +\mathrm{1}\right)×\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:\rightarrow\mathrm{2} \\ $$

Commented by TonyCWX08 last updated on 22/Feb/24

  The zero came from the limit of n^(−3/2)   Understand?

$$ \\ $$$${The}\:{zero}\:{came}\:{from}\:{the}\:{limit}\:{of}\:{n}^{−\mathrm{3}/\mathrm{2}} \\ $$$${Understand}? \\ $$

Commented by mr W last updated on 22/Feb/24

i just wanted to give an example  that ∞×0≠0. so it is not enough only  to know  n^(−(3/2)) →0 and then say the  final limit is zero. what is about  [(n+1)^((n+1)) ....(2n)^(2n) ]^(1/n^2 )  ?

$${i}\:{just}\:{wanted}\:{to}\:{give}\:{an}\:{example} \\ $$$${that}\:\infty×\mathrm{0}\neq\mathrm{0}.\:{so}\:{it}\:{is}\:{not}\:{enough}\:{only} \\ $$$${to}\:{know}\:\:{n}^{−\frac{\mathrm{3}}{\mathrm{2}}} \rightarrow\mathrm{0}\:{and}\:{then}\:{say}\:{the} \\ $$$${final}\:{limit}\:{is}\:{zero}.\:{what}\:{is}\:{about} \\ $$$$\left[\left({n}+\mathrm{1}\right)^{\left({n}+\mathrm{1}\right)} ....\left(\mathrm{2}{n}\right)^{\mathrm{2}{n}} \right]^{\frac{\mathrm{1}}{{n}^{\mathrm{2}} }} \:? \\ $$

Answered by witcher3 last updated on 22/Feb/24

Ω=(1/(n(√n)))e^((1/n^2 )[Σ_(k=1) ^n (n+k)ln(n+k)]) =(1/(n(√n)))e^((1/n)(Σ_(k=1) ^n (1+(k/n))(ln(n)+ln(1+(k/n))))   =(e^((1/n)Σ_(k=1) ^n (1+(k/n))ln(n)+(1/n)Σ_(k=1) ^n (1+(k/n))ln(1+(k/n))) /(n(√n)))  =((ln(n))/n)Σ_(k=1) ^n (1+(k/n))=((ln(n))/n)(n+((n+1)/2))..S_1   lim_(n→0) (1/n)Σ_1 ^n (1+(k/n))ln(1+(k/n))=^(Riemann Sum) ∫_0 ^1 (1+x)ln(1+x)dx  ∫_0 ^1 (1+x)ln(1+x)dx=[(((1+x)^2 )/2)ln(1+x)]_0 ^1 −∫_0 ^1 ((1+x)/2)dx=2ln(2)−(3/2)  ⇒∀ε>0 ∃N∈N;∀n≥N;2ln(2)−(3/2)−ε≤S_2 =(1/n)Σ_(k=1) ^n (1+(k/n))ln(1+(k/n))≤2ln(2)−(3/2)+ε...    Ω=(1/(n(√n)))e^((1/n)(((3n+1)/2))ln(n)+S_2 ) =(e^((3/2)ln(n)+((ln(n))/(2n))+S_2 ) /(n(√n)))=(n^(3/2) /n^(3/2) ).e^(((ln(n))/(2n))+S_2 )   =e^(((ln(n))/(2n))+S_2 ) ;((ln(n))/(2n))→0;S_2 →2ln(2)−(3/2)  lim_(n→∞) Ω=e^(2ln(2)−(3/2)) =(4/(e(√e)))

$$\Omega=\frac{\mathrm{1}}{\mathrm{n}\sqrt{\mathrm{n}}}\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} }\left[\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\left(\mathrm{n}+\mathrm{k}\right)\mathrm{ln}\left(\mathrm{n}+\mathrm{k}\right)\right]} =\frac{\mathrm{1}}{\mathrm{n}\sqrt{\mathrm{n}}}\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{n}}\left(\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\left(\mathrm{1}+\frac{\mathrm{k}}{\mathrm{n}}\right)\left(\mathrm{ln}\left(\mathrm{n}\right)+\mathrm{ln}\left(\mathrm{1}+\frac{\mathrm{k}}{\mathrm{n}}\right)\right)\right.} \\ $$$$=\frac{\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{n}}\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\left(\mathrm{1}+\frac{\mathrm{k}}{\mathrm{n}}\right)\mathrm{ln}\left(\mathrm{n}\right)+\frac{\mathrm{1}}{\mathrm{n}}\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\left(\mathrm{1}+\frac{\mathrm{k}}{\mathrm{n}}\right)\mathrm{ln}\left(\mathrm{1}+\frac{\mathrm{k}}{\mathrm{n}}\right)} }{\mathrm{n}\sqrt{\mathrm{n}}} \\ $$$$=\frac{\mathrm{ln}\left(\mathrm{n}\right)}{\mathrm{n}}\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\left(\mathrm{1}+\frac{\mathrm{k}}{\mathrm{n}}\right)=\frac{\mathrm{ln}\left(\mathrm{n}\right)}{\mathrm{n}}\left(\mathrm{n}+\frac{\mathrm{n}+\mathrm{1}}{\mathrm{2}}\right)..\mathrm{S}_{\mathrm{1}} \\ $$$$\underset{\mathrm{n}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}}{\mathrm{n}}\underset{\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\left(\mathrm{1}+\frac{\mathrm{k}}{\mathrm{n}}\right)\mathrm{ln}\left(\mathrm{1}+\frac{\mathrm{k}}{\mathrm{n}}\right)\overset{\mathrm{Riemann}\:\mathrm{Sum}} {=}\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}+\mathrm{x}\right)\mathrm{ln}\left(\mathrm{1}+\mathrm{x}\right)\mathrm{dx} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}+\mathrm{x}\right)\mathrm{ln}\left(\mathrm{1}+\mathrm{x}\right)\mathrm{dx}=\left[\frac{\left(\mathrm{1}+\mathrm{x}\right)^{\mathrm{2}} }{\mathrm{2}}\mathrm{ln}\left(\mathrm{1}+\mathrm{x}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} −\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}+\mathrm{x}}{\mathrm{2}}\mathrm{dx}=\mathrm{2ln}\left(\mathrm{2}\right)−\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\Rightarrow\forall\epsilon>\mathrm{0}\:\exists\mathrm{N}\in\mathbb{N};\forall\mathrm{n}\geqslant\mathbb{N};\mathrm{2ln}\left(\mathrm{2}\right)−\frac{\mathrm{3}}{\mathrm{2}}−\epsilon\leqslant\mathrm{S}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{n}}\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\left(\mathrm{1}+\frac{\mathrm{k}}{\mathrm{n}}\right)\mathrm{ln}\left(\mathrm{1}+\frac{\mathrm{k}}{\mathrm{n}}\right)\leqslant\mathrm{2ln}\left(\mathrm{2}\right)−\frac{\mathrm{3}}{\mathrm{2}}+\epsilon... \\ $$$$ \\ $$$$\Omega=\frac{\mathrm{1}}{\mathrm{n}\sqrt{\mathrm{n}}}\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{n}}\left(\frac{\mathrm{3n}+\mathrm{1}}{\mathrm{2}}\right)\mathrm{ln}\left(\mathrm{n}\right)+\mathrm{S}_{\mathrm{2}} } =\frac{\mathrm{e}^{\frac{\mathrm{3}}{\mathrm{2}}\mathrm{ln}\left(\mathrm{n}\right)+\frac{\mathrm{ln}\left(\mathrm{n}\right)}{\mathrm{2n}}+\mathrm{S}_{\mathrm{2}} } }{\mathrm{n}\sqrt{\mathrm{n}}}=\frac{\mathrm{n}^{\frac{\mathrm{3}}{\mathrm{2}}} }{\mathrm{n}^{\frac{\mathrm{3}}{\mathrm{2}}} }.\mathrm{e}^{\frac{\mathrm{ln}\left(\mathrm{n}\right)}{\mathrm{2n}}+\mathrm{S}_{\mathrm{2}} } \\ $$$$=\mathrm{e}^{\frac{\mathrm{ln}\left(\mathrm{n}\right)}{\mathrm{2n}}+\mathrm{S}_{\mathrm{2}} } ;\frac{\mathrm{ln}\left(\mathrm{n}\right)}{\mathrm{2n}}\rightarrow\mathrm{0};\mathrm{S}_{\mathrm{2}} \rightarrow\mathrm{2ln}\left(\mathrm{2}\right)−\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\Omega=\mathrm{e}^{\mathrm{2ln}\left(\mathrm{2}\right)−\frac{\mathrm{3}}{\mathrm{2}}} =\frac{\mathrm{4}}{\mathrm{e}\sqrt{\mathrm{e}}} \\ $$$$ \\ $$

Commented by universe last updated on 22/Feb/24

thank u so much sir

$${thank}\:{u}\:{so}\:{much}\:{sir} \\ $$

Commented by universe last updated on 22/Feb/24

 sir ∫_0 ^1 (1+x)log(1+x)dx = 2log2−3/4

$$\:{sir}\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}+{x}\right)\mathrm{log}\left(\mathrm{1}+{x}\right){dx}\:=\:\mathrm{2}{log}\mathrm{2}−\mathrm{3}/\mathrm{4}\: \\ $$

Commented by witcher3 last updated on 22/Feb/24

yes sorry for the mistack Too busy

$$\mathrm{yes}\:\mathrm{sorry}\:\mathrm{for}\:\mathrm{the}\:\mathrm{mistack}\:\mathrm{Too}\:\mathrm{busy} \\ $$

Commented by universe last updated on 23/Feb/24

no problem sir your approch is right

$${no}\:{problem}\:{sir}\:{your}\:{approch}\:{is}\:{right} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com