Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 167332 by Amazigh last updated on 13/Mar/22

lim_(n→∞)   Σ_(k=1) ^n ((1/k))^k

$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\frac{\mathrm{1}}{{k}}\right)^{{k}} \\ $$

Answered by LEKOUMA last updated on 14/Mar/22

S_n =lim_(n→0) Σ_(k=1) ^n ((1/k))^k   On prend,  a=0 et b=1   Choisison f(x)=x^k   f est continue sur [0,1]   S_n → ∫_0 ^1 f(x)dx=∫_0 ^1 x^k dx  ∫_0 ^1 x^k dx=[(x^(k+1) /(k+1))]_0 ^1 =(1/(k+1))  lim_(n→∞) Σ_(k=1) ^n ((1/k))^k =(1/(k+1))

$${S}_{{n}} =\underset{{n}\rightarrow\mathrm{0}} {\mathrm{lim}}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\frac{\mathrm{1}}{{k}}\right)^{{k}} \\ $$$${On}\:{prend},\:\:{a}=\mathrm{0}\:{et}\:{b}=\mathrm{1}\: \\ $$$${Choisison}\:{f}\left({x}\right)={x}^{{k}} \\ $$$${f}\:{est}\:{continue}\:{sur}\:\left[\mathrm{0},\mathrm{1}\right]\: \\ $$$${S}_{{n}} \rightarrow\:\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({x}\right){dx}=\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{k}} {dx} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{k}} {dx}=\left[\frac{{x}^{{k}+\mathrm{1}} }{{k}+\mathrm{1}}\right]_{\mathrm{0}} ^{\mathrm{1}} =\frac{\mathrm{1}}{{k}+\mathrm{1}} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\frac{\mathrm{1}}{{k}}\right)^{{k}} =\frac{\mathrm{1}}{{k}+\mathrm{1}} \\ $$

Commented by Amazigh last updated on 17/Mar/22

Pourqoi S_n =lim_(x→0) Σ_(k=1) ^n ((1/k))^k   et la limite ne doit pas dependre de k  ((1/(k+1))) , c′est une serie entiere qui converge.

$${Pourqoi}\:{S}_{{n}} =\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\frac{\mathrm{1}}{{k}}\right)^{{k}} \\ $$$${et}\:{la}\:{limite}\:{ne}\:{doit}\:{pas}\:{dependre}\:{de}\:{k}\:\:\left(\frac{\mathrm{1}}{{k}+\mathrm{1}}\right)\:,\:{c}'{est}\:{une}\:{serie}\:{entiere}\:{qui}\:{converge}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com