Question Number 69482 by Henri Boucatchou last updated on 24/Sep/19 | ||
$$\underset{{n}\rightarrow\infty} {{lim}}\frac{\mathrm{2}+{cosn}}{\mathrm{4}{n}+{sinn}}\:=\:? \\ $$ | ||
Commented by Tony Lin last updated on 24/Sep/19 | ||
$$−\mathrm{1}\leqslant{cosn}\leqslant\mathrm{1} \\ $$$$\mathrm{1}\leqslant\mathrm{2}+{cosn}\leqslant\mathrm{3} \\ $$$$−\mathrm{1}\leqslant{sinn}\leqslant\mathrm{1} \\ $$$$−\mathrm{1}+\mathrm{4}{n}\leqslant\mathrm{4}{n}+{sinn}\leqslant\mathrm{1}+\mathrm{4}{n} \\ $$$$\frac{\mathrm{1}}{−\mathrm{1}+\mathrm{4}{n}}\leqslant\frac{\mathrm{2}+{cosn}}{\mathrm{4}{n}+{sinn}}\leqslant\frac{\mathrm{3}}{\mathrm{1}+\mathrm{4}{n}} \\ $$$$\because\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{−\mathrm{1}+\mathrm{4}{n}}=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{3}}{\mathrm{1}+\mathrm{4}{n}}=\mathrm{0} \\ $$$$\therefore{By}\:{Squeeze}\:{Theorem} \\ $$$$\Rightarrow\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{2}+{cosn}}{\mathrm{4}{n}+{sinn}}=\mathrm{0} \\ $$ | ||
Answered by $@ty@m123 last updated on 24/Sep/19 | ||