Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 69482 by Henri Boucatchou last updated on 24/Sep/19

lim_(n→∞) ((2+cosn)/(4n+sinn)) = ?

$$\underset{{n}\rightarrow\infty} {{lim}}\frac{\mathrm{2}+{cosn}}{\mathrm{4}{n}+{sinn}}\:=\:? \\ $$

Commented by Tony Lin last updated on 24/Sep/19

−1≤cosn≤1  1≤2+cosn≤3  −1≤sinn≤1  −1+4n≤4n+sinn≤1+4n  (1/(−1+4n))≤((2+cosn)/(4n+sinn))≤(3/(1+4n))  ∵lim_(n→∞) (1/(−1+4n))=lim_(n→∞) (3/(1+4n))=0  ∴By Squeeze Theorem  ⇒lim_(n→∞) ((2+cosn)/(4n+sinn))=0

$$−\mathrm{1}\leqslant{cosn}\leqslant\mathrm{1} \\ $$$$\mathrm{1}\leqslant\mathrm{2}+{cosn}\leqslant\mathrm{3} \\ $$$$−\mathrm{1}\leqslant{sinn}\leqslant\mathrm{1} \\ $$$$−\mathrm{1}+\mathrm{4}{n}\leqslant\mathrm{4}{n}+{sinn}\leqslant\mathrm{1}+\mathrm{4}{n} \\ $$$$\frac{\mathrm{1}}{−\mathrm{1}+\mathrm{4}{n}}\leqslant\frac{\mathrm{2}+{cosn}}{\mathrm{4}{n}+{sinn}}\leqslant\frac{\mathrm{3}}{\mathrm{1}+\mathrm{4}{n}} \\ $$$$\because\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{−\mathrm{1}+\mathrm{4}{n}}=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{3}}{\mathrm{1}+\mathrm{4}{n}}=\mathrm{0} \\ $$$$\therefore{By}\:{Squeeze}\:{Theorem} \\ $$$$\Rightarrow\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{2}+{cosn}}{\mathrm{4}{n}+{sinn}}=\mathrm{0} \\ $$

Answered by $@ty@m123 last updated on 24/Sep/19

Let n=(1/x) so that as n→^� ∞, x→0  The given limit  lim_(x→0)     ((2+cos(1/x))/((4/x)+sin(1/x)))   lim_(x→0)     ((2x+xcos(1/x))/(4+xsin(1/x)))   lim_(x→0)     ((2x+x×(a no.  between −1 and1))/(4+x×(a no.  between −1 and1)))   =((2×0+0)/(4+0))  =0

$${Let}\:{n}=\frac{\mathrm{1}}{{x}}\:{so}\:{that}\:{as}\:{n}\bar {\rightarrow}\infty,\:{x}\rightarrow\mathrm{0} \\ $$$${The}\:{given}\:{limit} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\:\:\frac{\mathrm{2}+{cos}\frac{\mathrm{1}}{{x}}}{\frac{\mathrm{4}}{{x}}+{sin}\frac{\mathrm{1}}{{x}}}\: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\:\:\frac{\mathrm{2}{x}+{xcos}\frac{\mathrm{1}}{{x}}}{\mathrm{4}+{xsin}\frac{\mathrm{1}}{{x}}}\: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\:\:\frac{\mathrm{2}{x}+{x}×\left({a}\:{no}.\:\:{between}\:−\mathrm{1}\:{and}\mathrm{1}\right)}{\mathrm{4}+{x}×\left({a}\:{no}.\:\:{between}\:−\mathrm{1}\:{and}\mathrm{1}\right)}\: \\ $$$$=\frac{\mathrm{2}×\mathrm{0}+\mathrm{0}}{\mathrm{4}+\mathrm{0}} \\ $$$$=\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com