Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 214485 by depressiveshrek last updated on 09/Dec/24

lim_(n→∞)  ((1/(2∙4))+(1/(5∙7))+...+(1/((3n−1)(3n+1))))

$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{\mathrm{1}}{\mathrm{2}\centerdot\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{5}\centerdot\mathrm{7}}+...+\frac{\mathrm{1}}{\left(\mathrm{3}{n}−\mathrm{1}\right)\left(\mathrm{3}{n}+\mathrm{1}\right)}\right) \\ $$

Answered by mr W last updated on 10/Dec/24

ψ(1−(1/3))=−γ+Σ_(n=1) ^∞ ((1/n)−(1/(n−(1/3))))  ψ(1+(1/3))=−γ+Σ_(n=1) ^∞ ((1/n)−(1/(n+(1/3))))  ψ(1+(1/3))−ψ(1−(1/3))=Σ_(n=1) ^∞ ((1/(n−(1/3)))−(1/(n+(1/3))))  ψ((1/3))+3−ψ((1/3))−π cot (π/3)=Σ_(n=1) ^∞ ((1/(n−(1/3)))−(1/(n+(1/3))))  3−(π/( (√3)))=Σ_(n=1) ^∞ ((1/(n−(1/3)))−(1/(n+(1/3))))  Σ_(n=1) ^∞ (1/((3n−1)(3n+1)))  =(1/2)Σ_(n=1) ^∞ ((1/(3n−1))−(1/(3n+1)))  =(1/6)Σ_(n=1) ^∞ ((1/(n−(1/3)))−(1/(n+(1/3))))  =(1/6)(3−(π/( (√3))))  =(1/2)−(π/(6(√3))) ✓

$$\psi\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}}\right)=−\gamma+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{{n}}−\frac{\mathrm{1}}{{n}−\frac{\mathrm{1}}{\mathrm{3}}}\right) \\ $$$$\psi\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}}\right)=−\gamma+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{{n}}−\frac{\mathrm{1}}{{n}+\frac{\mathrm{1}}{\mathrm{3}}}\right) \\ $$$$\psi\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}}\right)−\psi\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}}\right)=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{{n}−\frac{\mathrm{1}}{\mathrm{3}}}−\frac{\mathrm{1}}{{n}+\frac{\mathrm{1}}{\mathrm{3}}}\right) \\ $$$$\psi\left(\frac{\mathrm{1}}{\mathrm{3}}\right)+\mathrm{3}−\psi\left(\frac{\mathrm{1}}{\mathrm{3}}\right)−\pi\:\mathrm{cot}\:\frac{\pi}{\mathrm{3}}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{{n}−\frac{\mathrm{1}}{\mathrm{3}}}−\frac{\mathrm{1}}{{n}+\frac{\mathrm{1}}{\mathrm{3}}}\right) \\ $$$$\mathrm{3}−\frac{\pi}{\:\sqrt{\mathrm{3}}}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{{n}−\frac{\mathrm{1}}{\mathrm{3}}}−\frac{\mathrm{1}}{{n}+\frac{\mathrm{1}}{\mathrm{3}}}\right) \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{3}{n}−\mathrm{1}\right)\left(\mathrm{3}{n}+\mathrm{1}\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{\mathrm{3}{n}−\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{3}{n}+\mathrm{1}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{6}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{{n}−\frac{\mathrm{1}}{\mathrm{3}}}−\frac{\mathrm{1}}{{n}+\frac{\mathrm{1}}{\mathrm{3}}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{6}}\left(\mathrm{3}−\frac{\pi}{\:\sqrt{\mathrm{3}}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}−\frac{\pi}{\mathrm{6}\sqrt{\mathrm{3}}}\:\checkmark \\ $$

Commented by MathematicalUser2357 last updated on 12/Dec/24

$$\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com