Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 212169 by universe last updated on 04/Oct/24

          lim_(λ→0^+ )   ∫_λ ^(2λ)  (e^((x−1)^2 ) /x)dx = ?

$$\:\:\:\:\:\:\:\:\:\:\underset{\lambda\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\:\int_{\lambda} ^{\mathrm{2}\lambda} \:\frac{{e}^{\left({x}−\mathrm{1}\right)^{\mathrm{2}} } }{{x}}{dx}\:=\:? \\ $$

Answered by MrGaster last updated on 03/Nov/24

=lim_(λ→0^+ ) ∫_1 ^2 (e^((λu−1)^2 ) /(λu))λdu  =lim_(λ→0^+ ) (e^(λ^2 u^2  −2λu+1) /u)du  =∫_1 ^2 (e^1 /u)du  =e[ln u]_1 ^2   =e(ln 2−ln 1)  =e ln 2

$$=\underset{\lambda\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\int_{\mathrm{1}} ^{\mathrm{2}} \frac{{e}^{\left(\lambda{u}−\mathrm{1}\right)^{\mathrm{2}} } }{\lambda{u}}\lambda{du} \\ $$$$=\underset{\lambda\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\frac{{e}^{\lambda^{\mathrm{2}} {u}^{\mathrm{2}} \:−\mathrm{2}\lambda{u}+\mathrm{1}} }{{u}}{du} \\ $$$$=\int_{\mathrm{1}} ^{\mathrm{2}} \frac{{e}^{\mathrm{1}} }{{u}}{du} \\ $$$$={e}\left[\mathrm{ln}\:{u}\right]_{\mathrm{1}} ^{\mathrm{2}} \\ $$$$={e}\left(\mathrm{ln}\:\mathrm{2}−\mathrm{ln}\:\mathrm{1}\right) \\ $$$$={e}\:\mathrm{ln}\:\mathrm{2} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com