Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 52675 by maxmathsup by imad last updated on 11/Jan/19

let u_n =(−1)^n ∫_0 ^(π/2)  sin^n xdx  calculate Σ u_n

$${let}\:{u}_{{n}} =\left(−\mathrm{1}\right)^{{n}} \int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{sin}^{{n}} {xdx}\:\:{calculate}\:\Sigma\:{u}_{{n}} \\ $$

Commented by maxmathsup by imad last updated on 11/Jan/19

we have Σ_(n=0) ^∞  u_n  =Σ_(n=0) ^∞ ∫_0 ^(π/2) (−sinx)^n dx =∫_0 ^(π/2)  (Σ_(n=0) ^∞ (−sinx)^n )dx  =∫_0 ^(π/2)   (dx/(1+sinx))  =_(tan((x/(2 )))=t)    ∫_0 ^1    (1/(1+((2t)/(1+t^2 )))) ((2dt)/(1+t^2 )) =2 ∫_0 ^1    (dt/(1+t^2  +2t))  =2 ∫_0 ^1   (dt/((t+1)^2 )) =2[−(1/(t+1))]_0 ^1 =2(1−(1/2)) = 1 ⇒ Σ_(n=0) ^∞  u_n =1 .

$${we}\:{have}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{u}_{{n}} \:=\sum_{{n}=\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(−{sinx}\right)^{{n}} {dx}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\left(\sum_{{n}=\mathrm{0}} ^{\infty} \left(−{sinx}\right)^{{n}} \right){dx} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{dx}}{\mathrm{1}+{sinx}}\:\:=_{{tan}\left(\frac{{x}}{\mathrm{2}\:}\right)={t}} \:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }}\:\frac{\mathrm{2}{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }\:=\mathrm{2}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} \:+\mathrm{2}{t}} \\ $$$$=\mathrm{2}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{dt}}{\left({t}+\mathrm{1}\right)^{\mathrm{2}} }\:=\mathrm{2}\left[−\frac{\mathrm{1}}{{t}+\mathrm{1}}\right]_{\mathrm{0}} ^{\mathrm{1}} =\mathrm{2}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\right)\:=\:\mathrm{1}\:\Rightarrow\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{u}_{{n}} =\mathrm{1}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com